Arduino как подсоединить джойстик к серве машинке. Джойстик Ардуино – подключение и скетч. Определение положения джойстика и включение светодиода по нажатию кнопки

Обзор тактильного Джойстика

Джойстик является одним из устройств для удобной передачи информации от человека к компьютеру или микроконтроллеру. Джойстики используются для управления движением роботов, мобильных платформ и прочих механизмов.

Модуль двухосевого джойстик (рис. 1) имеет две степени свободы, представляет собой ручку, закреплённую на шаровом шарнире с двумя взаимно перпендикулярными осями.

Рисунок 1. Джойстик.

При наклоне ручки вращаются подвижные контакты каждого из двух потенциометров номиналом 10 кОм, которые определяют положение осей X и Y. Средний контакт каждого потенциометра выведен на контакты VRX и VRY разъема, а крайние подключены к питанию и земле. Также джойстик оснащен тактовой кнопкой, которая срабатывает при вертикальном нажатии на ручку, показания снимаются с контакта SW. После отпускания джойстик возвращается в первоначальное центральное состояние.

Технические характеристики

    Напряжение питания: номинальное 3.0…5,5 В;

    Выходной сигнал: цифровой (кнопка) и аналоговый (оси X и Y);

    Размеры: 26 мм x 40 мм x 22 мм.

Подключение к плате Arduino

Для подключения модуля джойстика к плате Arduino будем использовать два аналоговых и один цифровой вывод Arduino, а также с платы Arduino подаем питание на контакты джойстика GND и +5V. Схема подключения показана на рисунке 2.


Рисунок 2. Схема подключения модуля джойстика к плате Arduino.

Напишем скетч получения данных с джойстика. Данные с потенциометров по осям X и Y могут принимать значения от 0 до 1023. Неподвижному положению джойстика соответствуют значение 511 для каждого потенциометра. При нажатии на кнопку на входе 3 Arduino будет появляться 0. Чтобы не было наводок, вывод кнопки необходимо подтянуть к +5 В. Данные выводим в последовательный порт.

Содержимое скетча показано в листинге 1.


Листинг 1

#define PIN_VRX A0

#define PIN_VRY A1

// пин подключения кнопки

#define PIN_BUTTON 3

Serial.begin (9600);

// Выводим значение по оси X

Serial.print("X = ");

Serial.println(analogRead(PIN_VRX));

// Выводим значение по оси Y

Serial.print("Y = ");

Serial.println(analogRead(PIN_VRY));

// Состояние кнопки

Serial.print("button = ");

if (digitalRead(PIN_BUTTON) == HIGH) {

Serial.println ("NOT CLICK");

Serial.println ("CLICK!");

// Пауза 1 сек

Загружаем скетч на плату Arduino, открываем монитор последовательного порта и видим вывод данных при изменении положения джойстика (рис. 3).


Рисунок 3. Вывод данных с джойстика в монитор последовательного порта.

Пример использования

Рассмотрим пример использования джойстика для управления подвесом для камеры на сервоприводах. Нам потребуются следующие детали:

    плата Arduino Uno – 1 шт;

    плата прототипирования – 1 шт;

    модуль джойстика – 1 шт;

    сервопривод – 2 шт;

    подвес для камеры – 1 шт;

    блок питания 5В – 1 шт;

Схема подключения показана на рисунке 4.


Рисунок 4. Схема подключения модуля джойстика и подвеса на сервоприводах к плате Arduino.

Считываем показания джойстика для каждой из осей X, Y и переводим их в значение угла поворота соответствующего сервопривода. Чтобы убрать дрожание сервопривода не реагируем на маленькие изменения положения джойстика.

Содержимое скетча показано в листинге 2.


Листинг 2

// подключение библиотеки Servo

#include

// пины подключения сервоприводов

#define PIN_SERVO_X 9

#define PIN_SERVO_Y 10

// пин подключения контакта VRX

#define PIN_VRX A0

// пин подключения контакта VRY

#define PIN_VRY A1

// пин подключения кнопки

#define PIN_BUTTON 3

// создание объектов Servo

// служебные переменные

int angleX, angleY;

// запуск последовательного порта

Serial.begin (9600);

// подключить управление сервоприводом к пинам

// PIN_SERVO_X и PIN_SERVO_Y

servoX.attach(PIN_SERVO_X);

servoY.attach(PIN_SERVO_Y);

// получение данных с джойстика

joyX=analogRead(PIN_VRX);

joyY=analogRead(PIN_VRY);

// Выводим значение по оси X

Serial.print("X = ");

Serial.print(joyX);

// Выводим значение по оси Y

Serial.print(" Y = ");

Serial.println(joyY);

// сравнение с предыдущими

if(abs(joyX-joyXpr)>10) { // повернуть по оси X

angleX=map(joyX,0,1023,0,180);

servoX.write(angleX);

if(abs(joyY-joyYpr)>10) { // повернуть по оси Y

angleY=map(joyY,0,1023,0,180);

servoY.write(angleY);

// время на перемещение сервопривода

Загружаем скетч на плату Arduino, и управляем подвесом с помощью джойстика.



Рисунок 5-6. Схема в сборе.

Часто задаваемые вопросы

1. Не изменяются данные на аналоговых выводах Arduino при изменении положения джойстика.

2. Значение кнопки джойстика принимает случайные значения или не изменяется тока отрицательное

    Проверьте правильность подключения джойстика к плате Arduino.

    Подтяните вывод кнопки к питанию через резистор 4.7 кОм.


Процесс сборки самоделки:

Шаг первый. Подключаем серводвигатели
Процесс сборки самоделки начинается с подключения серводвигателей. Для того чтобы собрать предварительный макет, применяется монтажная плата. Потом можно будет сделать отдельный шилд. На рисунке можно увидеть, как именно все подключается.


Красный кабель - это питание, он подключается к пину 5V на контроллере Arduino.
Черный провод - это минус (земля), он подключается к выходу на Arduino под названием GND.
Желтый кабель от серводвигателя Right & Left нужно подключить к пину 11. На некоторых моделях он может быть и белого цвета.
Аналогичный желтый кабель Up & Down нужно подключить к пину 4. Он также на некоторых моделях двигателей может быть белого цвета.
Важно помнить, что коннекторы сигнала, которыми происходит управление двигателем, исходят из ШИМ выходов.

Шаг второй. Подключаем джойстик

Как подключается джойстик, можно увидеть на картинке. Поначалу схема может показаться довольно сложной, но на самом деле ничего сложного здесь нет. Как и в случае с двигателями для подключения здесь используется монтажная плата.


1. На модуле джойстика можно найти выходы U/R+ и L/R+. Через эти выходы происходит подключение питания. Соответственно сюда нужно подать напряжение +5V от соответствующего пина на Arduino.

2. Еще на джойстике присутствует два разъема под названием L/R и два разъема U/D. Их нужно подключить к аналоговым выходам А3 и А4.

3. Ну и в заключении землю на джойстике нужно соединить с землей на Arduino.

После сборки подключение нужно перепроверить. Именно из-за ошибок подключения в большинстве случаев возникают проблемы. Особенно это касается случаев, когда используется монтажная плата и на ней находится много подключений.

Шаг третий. Скетч для Arduino
Код очень простой и в нем присутствуют подробные комментарии. Приведенный код нужно просто скопировать в Arduino IDE. После того как код будет загружен, двигатели не должны двигаться. Они должны начинать двигаться только при нажатии кнопки на джойстике.


Проблемы, которые могут возникнуть и способы их решения
1. Если двигатели не включаются, нужно перепроверить подключение. Для подключения двигателей используются выходы типа ШИМ, а для подключения джойстиков применяются аналоговые выходы.

2. Бывает такое, что сразу после загрузки кода двигатели начинают вибрировать. Такое бывает если неправильно подключить пины U/D+ L/R+. Подключение нужно тщательно проверить. Чтобы не сжечь плату во время проверки, ее нужно обязательно отключить от компьютера.

3. Если все перепроверено, но двигатели все равно не хотят работать, можно попробовать переподключить джойстик. Его нужно снять с монтажной платы, а затем установить назад с некоторым усилием. Коннекторы джойстика должны хорошо войти в макетку.

Если все вышло, теперь можно приступать к созданию каких-либо самоделок с управлением через джойстик. К примеру, можно сделать робота, которым можно будет управлять с помощью джойстика, и многое другое.

Инструкция

Джойстик - удобное и лёгкое в использовании устройство для передачи информации. Видов джойстиков по количеству степеней свободы, принципу считывания показаний и используемым технологиям существует большое количество. Джойстики чаще всего используются для управления движением каких-либо механизмов, управляемых моделей, роботов. Аналоговый джойстик, который мы сегодня рассмотрим, представляет собой ручку, закреплённую на шаровом шарнире с двумя взаимно перпендикулярными осями. При наклоне ручки, ось вращает подвижный контакт потенциометра, благодаря чему изменяется напряжение на его выходе. Также аналоговый джойстик имеет тактовую кнопку, которая срабатывает при вертикальном надавливании на ручку.

Подключим джойстик по приведённой схеме. Аналоговые выходы X и Y джойстика подключим к аналоговым входам A1 и A2 Arduino, выход кнопки SW - к цифровому входу 8. Питание джойстика осуществляется напряжением +5 В.

Для того чтобы наглядно увидеть, как работает джойстик, напишем такой скетч. Объявим пины, зададим им режимы работы. Обратите внимание, в процедуре setup() мы подали на вход switchPin высокий уровень. Этим мы включили встроенный подтягивающий резистор на этом порту. Если его не включить, то, когда кнопка джойстика не нажата, 8-ой порт Arduino будет висеть в воздухе и ловить наводки. Это повлечёт за собой нежелательные хаотичные ложные срабатывания.

В процедуре loop() мы постоянно опрашиваем состояние кнопки и отображаем его с помощью светодиода на выходе 13. Из-за того, что вход switchPin подтянут к питанию, светодиод постоянно горит, а при нажатии кнопки гаснет, а не наоборот.

Далее мы считываем показания двух потенциометров джойстика - выхода осей X и Y. Arduino имеет 10-разрядные АЦП, поэтому значения, снимаемые с джойстика, лежат в диапазоне от 0 до 1023. В среднем положении джойстика, как видно на иллюстрации, снимаются значения в районе 500 - примерно середина диапазона.

Обычно джойстик используют для управления электродвигателями. Но почему бы не использовать его, например, для управления яркостью светодиода? Давайте подключим по приведённой схеме RGB светодиод (или три обычных светодиода) к цифровым портам 9, 10 и 11 Arduino, не забывая, конечно, о резисторах.

Будем менять яркость соответствующих цветов при изменении положения джойстика по осям, как показано на рисунке. Из-за того, что джойстик может быть не точно отцентрирован производителем и иметь середину шкалы не на отметке 512, а от 490 до 525, то светодиод может слегка светиться даже когда джойстик находится в нейтральном положении. Если вы хотите, чтобы он был полностью выключен, то внесите в программу соответствующие поправки.

Ориентируясь на приведённую диаграмму, напишем скетч управления Arduino яркостью RGB светодиода с помощью джойстика.

Сначала объявим соответствие пинов и две переменные - ledOn и prevSw - для работы с кнопкой. В процедуре setup() назначим пинам функции и подключим к пину кнопки подтягивающий резистор командой digitalWrite(swPin, HIGH) .

В цикле loop() определяем нажатие кнопки джойстика. При нажатии на кнопку переключаем режимы работы между режимом "фонарика" и режимом "цветомузыки".

В режиме freeMode() управляем яркостью светодиодов с помощью наклона джойстика в разные стороны: чем сильнее наклон по оси, тем ярче светит соответствующий цвет. Причём преобразование значений берёт на себя функция map(значение, отНижнего, отВерхнего, кНижнему, кВерхнему) . Функция map() переносит измеренные значения (отНижнего, отВерхнего) по осям джойстика в желаемый диапазон яркости (кНижнему, кВерхнему). Можно то же самое сделать обычными арифметическими действиями, но такая запись существенно короче.

В режиме discoMode() три цвета попеременно набирают яркость и гаснут. Чтобы можно было выйти из цикла при нажатии кнопки, каждую итерацию проверяем, не была ли нажата кнопка.

В проекте реализовано управление двумя серводвигателями с использованием джойстика и Arduino.

Управление джойстиком очень удобное и интуитивно понятное. Особенно для подобных проектов с двумя степенями свободы. Более детально с особенностями настройки и управлением джойстиком вы можете в соответствующей статье на сайт.

Необходимые материалы

  • Плата Arduino (в данным случае используется Arduino Uno Rev 3).
  • 2 сервы Parallax.
  • Джойстик - тоже от Parallax.
  • Маленькая монтажная плата.
  • Коннекторы для подключения.
  • Что-то для отслеживания перемещений серводвигателей (например, здесь используются поломанная веб-камера и кубики от лего. Детально в статье эти узлы не рассматриваются, но на фото видно).

Проект в собранном виде показан на рисунке ниже:

Подключаем серводвигатели

Начнем с подключения двух серводвигателей (для предварительного макета используется монтажная плата. В последствии можно сваять отдельный шилд).

На рисунке ниже представлена исчерпывающая информация про подключение.


Красный кабель двигателей (питание) - к пину 5V на Arduino

Черный кабель двигателей (земля) - к пину GND на Arduino

Желтый кабель от двигателя Right & Left (на некоторых моделях он белого цвета) - к пину 11.

Желтый кабель от двигателя Up & Down (на некоторых моделях он белого цвета) - к пину 4.

Не забывайте, что коннекторы управляющего сигнала на сервоприводах должны подключаться к ШИМ выходам Arduino.

Подключаем джойстик

Представленная на рисунке ниже схема подключения может вас немного смутить. Но поверьте, все не так сложно как кажется на первый взгляд. Опять таки для подключения используем монтажную плату.


1. На модуле джойстика один выход U/R+ и один L/R+. Это выходы для подключения питания. Эти выходы подключаются к пину 5V на Arduino.

2. Также есть два разъема L/R и два разъема U/D. Они подключаются к аналоговым входам А3 и А4.

3. Земля на джойстике подключается к земле на Arduino.

Не забудьте перепроверить подключение. Помните, что большинство ошибок в проектах возникает именно из-за неправильного подключения. Особенно если вы используете монтажную плату, которая обрастает кучей коннекторов.

Скетч для Arduino

Основные пояснения к скетчу приведены в комментариях. Приведенный ниже код достаточно скопировать и вставить в Arduino IDE. После загрузки скетча на плату, сервопривода не должны двигаться, пока вы не используете джойстик.

#include <Servo.h>

const int servo1 = 3; // первая серва

const int servo2 = 10; // вторая серва

const int joyH = 3; // выход L/R джойстика Parallax

const int joyV = 4; // выход U/D джойстика Parallax

int servoVal; // переменная для хранения данных с аналогового пина

Servo myservo1; // создаем объект Servo для управления первой сервой

Servo myservo2; // создаем объект Servo для управления второй сервой

myservo1.attach(servo1); // подключаем серву

myservo2.attach(servo2); // подключаем серву

// Инициализация серийного протокола связи

Serial.begin(9600);

// отображаем значения с джойстика с использованием серийного монитора

outputJoystick();

// считываем значение с джойстика по горизонтали (значение между 0 и 1023)

servoVal = analogRead(joyH);

servoVal = map(servoVal, 0, 1023, 0, 180); // масштабируем полученное значение для использования с серводвигателем (результат возвращается в диапазоне от 0 до 180)

myservo2.write(servoVal); // выводим ротор сервы в положение в соответствии с полученным масштабированным значением

// считываем значение джойстика вдоль вертикальной оси (значение от 0 до 1023)

servoVal = analogRead(joyV);

servoVal = map(servoVal, 0, 1023, 70, 180); //масштабируем полученное значение для использования с сервой (диапазон: от 70 до 180)

myservo1.write(servoVal); // выводим ротор второй сервы в соответствии с полученным масштабированным значением

delay(15); // ждем, пока серва обеспечит заданное положение

* отображаем значения джойстика

void outputJoystick(){

Serial.print(analogRead(joyH));

Serial.print ("---");

Serial.print(analogRead(joyV));

Serial.println ("----------------");

Результат представлен на видео ниже:

Возможные проблемы и их решение

1. Сервы не двигаются.

Проверьте подключение. Не забывайте, что для подключения серв используются ШИМ выходы, а для джойстика - аналоговые.

2. После загрузки скетча на Arduino, сервы начинают вибрировать.

Скорее всего, неправильно подключены пины U/D+ L/R+. Очень внимательно проверьте подключение. Перед проверкой контактов и подключения, обязательно отключите Arduino от персонального компьютера, чтобы случайно не спалить привода или плату.

3. Я внимательно проверил подключение, но серводвигатели все равно не двигаются.

Отключите джойстик и попробуйте его подключить заново. При этом джойстик лучше снять с монтажной платы. При повторной установке прижмите его с некоторым усилием к монтажной плате. Коннекторы от джойстика должны хорошо сесть на макетку.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Сегодня я решил попробовать управлять сервоприводом при помощи джойстика, собрав простую схемку на базе Arduino Uno.

Что нам потребуется

  1. Соединительные провода;

Исходный код

#include
int joyX=0;
int angl=0;
Servo myservo;
void setup()
{
myservo.attach(9);
pinMode(joyX,INPUT);
Serial.begin(9600);
}
void loop()
{
int val = (analogRead(joyX)/64)-8;
if (val > 0) {
angl=angl+abs(val);
}
else {
if (val < 0) {
angl=angl-abs(val);}
}
if (angl < 0) angl = 0;
if (angl > 180) angl = 180;
Serial.print("Power: ");
Serial.println(val);
Serial.print("Angle: ");
Serial.println(angl);
myservo.write(angl);
int spd = 500;
if (val != 0) {
spd = 600/abs(val);
}
Serial.print("Speed: ");
Serial.println(spd);
Serial.println("-----------");
delay(spd);
}

Как это работает

Управлять сервоприводом оказалось просто (с использованием библиотеки). Мы просто вызываем функцию write и значение угла поворота в градусах. А вот само значение угла мы будем изменять динамически с помощью джойстика.

В цикле считывается значение с аналогового входа (изменяется от 0 до 1023 в зависимости от положения джойстика), я делю это значение, чтобы уменьшить шаг на 64 и вычитаю 8, чтобы усреднить. Теперь мы будем иметь значение от 7 до -8. Затем на это значение я изменяю переменную, хранящую угол поворота. Также изменяю задержку в зависимости от этого значения. Чем больше отклонение, тем меньше задержка (быстрее происходит вращение).

  1. С Arduino берём +5 В на одну сторону бредборда (красный првоод);
  2. Чёрный провод идёт с GND на другую сторону бредборда;
  3. Сигнальный пин – девятый, зелёный провод, идёт на сервомотор (жёлтый шлейф);
  4. Так же на аналоговый вход a0 подаётся синий провод от джойстика (пин S-X);
  5. С джойстика VCC стороны X идёт красным проводом на +5 В бредборда;
  6. С джойстика GND стороны X идёт белым проводом на GND общее бредборда;
  7. Ну и соответственно белый провод GND бредборда в чёрный шлейф сервомотора;
  8. Оранжевый провод +5 В бредборда в красный шлейф сервомотора;

Что получилось

Понравилась статья? Поделитесь ей
Наверх