Наука стрельбы: Объяснение эффекта силы Кориолиса. Что такое сила Кориолиса? Действие силы кориолиса

29. Сила Кориолиса

Самая ужасная сила, которой гравитоны не нужны

Сначала – что известно научному миру о силе Кориолиса?

При вращении диска более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Переместить некоторое тело вдоль радиуса так, чтобы оно оставалось на радиусе (синяя стрелка из положения “А” в положение “Б”) можно, увеличив скорость тела, то есть придав ему ускорение. Если система отсчёта вращается вместе с диском, то видно, что тело “не хочет” оставаться на радиусе, а “пытается” уйти влево – это и есть сила Кориолиса.

Траектории шарика при движении по поверхности вращающейся тарелки в разных системах отсчета (вверху – в инерциальной, внизу – в неинерциальной).

Сила Кориолиса – одна из сил инерции , существующая в неинерциальной системе отсчёта из-за вращения и законов инерции , проявляющаяся при движении в направлении под углом к оси вращения. Названа по имени французского учёного Гюстава Гаспара Кориолиса , впервые её описавшего. Ускорение Кориолиса было получено Кориолисом в 1833 году, Гауссом в 1803 году и Эйлером в 1765 году .

Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции , то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью . Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение , так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.

Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной F = ma , где a — кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой противоположной направленности. F K = — ma .

Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с другой силой инерции — центробежной силой , которая направлена по радиусу вращающейся окружности . Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.

Правило Жуковского

Ускорение кориолиса можно получить, спроецировав вектор скорости материальной точки в неинерциальной системе отсчёта на плоскость перпендикулярную вектору угловой скорости неинерциальной системы отсчёта , увеличив полученную проекцию в раз и повернув её на 90 градусов в направлении переносного вращения. Н. Е. Жуковским была предложена удобная для практического использования словесная формулировка определения силы Кориолиса

Дополнения:

Правило буравчика

Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости , характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока . Правило правой руки Правило буравчика : “Если направление поступательного движения буравчика (винта ) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции “.

Определяет направление индукционного тока в проводнике, движущемся в магнитном поле

Правило правой руки : “Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4 вытянутых пальца укажут направление индукционного тока”.

Для соленоида оно формулируется так: “Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида”.

Правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: “Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90® большой палец покажет направление действующей силы Лоренца или Ампера”.

МАГНИТНОЕ ПОЛЕ

СВОЙСТВА (стационарного) МАГНИТНОГО ПОЛЯ

Постоянное (или стационарное) магнитное поле – это магнитное поле, неизменяющееся во времени.

1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

3. Магнитное поле вихревое , т.е. не имеет источника.

МАГНИТНЫЕ СИЛЫ - это силы, с которыми проводники с током действуют друг на друга.

………………

МАГНИТНАЯ ИНДУКЦИЯ

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ - это линии, касательными к которой в любой её точке является вектор магнитной индукции.

Однородное магнитное поле – это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

– имеют направление;

– непрерывны;

– замкнуты (т.е. магнитное поле является вихревым);

– не пересекаются;

– по их густоте судят о величине магнитной индукции.

Правило буравчика (в основном для прямого проводника с током):

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. Правило правой руки (в основном для определения направления магнитных линий внутри соленоида): Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
Существуют другие возможные варианты применения правил буравчика и правой руки.
СИЛА АМПЕРА - это сила, с которой магнитное поле действует на проводник с током. Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике. Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику. Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю. Направление силы Ампера определяется по правилу левой руки:

Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

Направление силы Кориолиса на вращающейся Земле. Центробежная сила , действующая на тело массы m , по модулю равна F pr = mb 2 r , где b = омега– угловая скорость вращения и r — расстояние от оси вращения. Вектор этой силы лежит в плоскости оси вращения и направлен перпендикулярно от неё. Величина силы Кориолиса , действующей на частицу, движущуюся со скоростью относительно данной вращающейся системы отсчета, определяется выражением , где альфа — угол между векторами скорости частицы и угловой скорости системы отсчета. Вектор этой силы направлен перпендикулярно обоим векторам и вправо от скорости тела (определяется по правилу буравчика ).

Эффекты силы Кориолиса: лабораторные эксперименты

Маятник Фуко на северном полюсе. Ось вращения Земли лежит в плоскости колебаний маятника. Маятник Фуко . Эксперимент, наглядно демонстрирующий вращение Земли, поставил в 1851 году французский физик Леон Фуко . Его смысл заключается в том, что плоскость колебаний математического маятника неизменна относительно инерциальной системы отсчета, в данном случае относительно неподвижных звезд. Таким образом, в системе отсчета, связанной с Землей, плоскость колебаний маятника должна поворачиваться. С точки зрения неинерциальной системы отсчета, связанной с Землёй, плоскость колебаний маятника Фуко поворачивается под действием силы Кориолиса. Наиболее отчетливо этот эффект должен быть выражен на полюсах, где период полного поворота плоскости маятника равен периоду вращения Земли вокруг оси (звёздным суткам). В общем случае, период обратно пропорционален синусу географической широты, на экваторе плоскость колебаний маятника неизменна.

В настоящее время маятник Фуко с успехом демонстрируется в ряде научных музеев и планетариев, в частности, в планетарии Санкт-Петербурга , планетарии Волгограда.

Существует ряд других опытов с маятниками, используемых для доказательства вращения Земли. Например, в опыте Браве (1851 г.) использовался конический маятник . Вращение Земли доказывалось тем, что периоды колебаний по и против часовой стрелки различались, поскольку сила Кориолиса в этих двух случаях имела разный знак. В 1853 г. Гаусс предложил использовать не математический маятник, как у Фуко , а физический , что позволило бы уменьшить размеры экспериментальной установки и увеличить точность эксперимента. Эту идею реализовал Камерлинг-Оннес в 1879 г.

Гироскоп – вращающееся тело со значительным моментом инерции сохраняет момент импульса, если нет сильных возмущений. Фуко, которому надоело объяснять, что происходит с маятником Фуко не на полюсе, разработал другую демонстрацию: подвешенный гироскоп сохранял ориентацию, а значит медленно поворачивался относительно наблюдателя.

Отклонение снарядов при орудийной стрельбе. Другим наблюдаемым проявлением силы Кориолиса является отклонение траекторий снарядов (в северном полушарии вправо, в южном — влево), выстреливаемых в горизонтальном направлении. С точки зрения инерциальной системы отсчета, для снарядов, выстреливаемых вдоль меридиана , это связано с зависимостью линейной скорости вращения Земли от географической широты: при движении от экватора к полюсу снаряд сохраняет горизонтельную компоненту скорости неизменной, в то время как линейная скорость вращения точек земной поверхности уменьшается, что приводит к смещению снаряда от меридиана в сторону вращения Земли. Если выстрел был произведен параллельно экватору, то смещение снаряда от параллели связано с тем, что траектория снаряда лежит в одной плоскости с центром Земли, в то время как точки земной поверхности движутся в плоскости, перпендикулярной оси вращения Земли.

Отклонение свободно падающих тел от вертикали. Если скорость движения тела имеет большую вертикальную составляющую, сила Кориолиса направлена к востоку, что приводит к соответствующему отклонению траектории тела, свободно падающего (без начальной скорости) с высокой башни. При рассмотрении в инерциальной системе отсчета эффект объясняется тем, что вершина башни относительно центра Земли движется быстрее, чем основание, благодаря чему траектория тела оказывается узкой параболой и тело слегка опережает основание башни.

Этот эффект был предсказан Ньютоном в 1679 г. Ввиду сложности проведения соответствующих экспериментов эффект удалось подтвердить только в конце XVIII — первой половине XIX века (Гульельмини, 1791; Бенценберг, 1802; Райх, 1831).

Австрийский астроном Иоганн Хаген (1902 г.) осуществил эксперимент, являющийся модификацией этого опыта, где вместо свободно падающих грузов использовалась машина Атвуда . Это позволило снизить ускорение падения, что привело к уменьшению размеров экспериментальной установки и повышению точности измерений.

Эффект Этвёша. Ни низких широтах сила Кориолиса при движении по земной поверхности направлена в вертикальном направлении и её действие приводит к увеличению или уменьшению ускорения свободного падения, в зависимости от того, движется ли тело на запад или восток. Этот эффект назван эффектом Этвёша в честь венгерского физика Роланда Этвёша , экспериментально обнаружившего его в начале XX века.

Опыты, использующие закон сохранения момент импульса. Некоторые эксперименты основаны на законе сохранения момента импульса : в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчета равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.

Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение. Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменения момента инерции установке примерно в 10 4 раз и её быстрому вращению с угловой скоростью, в 10 4 раз превышающей скорость вращения Земли.

Воронка в ванне. Поскольку сила Кориолиса очень слаба, она оказывает пренебрежимо малое влияние на направление закручивания воды при сливе в раковине или ванне, поэтому в общем случае направление вращения в воронке не связано с вращением Земли. Однако в тщательно контролируемых экспериментах можно отделить действие силы Кориолиса от других факторов: в северном полушарии воронка будет закручена против часовой стрелки, в южном — наоборот (всё наоборот).

Эффекты силы Кориолиса: явления в окружающей природе

Закон Бэра. Как впервые отметил петербургский академик Карл Бэр в 1857 году, реки размывают в северном полушарии правый берег (в южном полушарии — левый), который вследствие этого оказывается более крутым (закон Бэра ). Объяснение эффекта аналогично объяснению отклонения снарядов при стрельбе в горизонтальном направлении: под действием силы Кориолиса вода сильнее ударяется в правый берег, что приводит к его размытию, и, наоборот, отступает от левого берега.

Циклон над юго-восточным побережьем Исландии (вид из космоса). Ветры: пассаты, циклоны, антициклоны. С наличием силы Кориолиса, направленной в северном полушарии вправо и в южном влево, связаны также атмосферные явления: пассаты, циклоны и антициклоны. Явление пассатов вызывается неодинаковостью нагрева нижних слоёв земной атмосферы в приэкваториальной полосе и в средних широтах, приводящему к течению воздуха вдоль меридиана на юг или север в северном и южном полушариях, соответственно. Действие силы Кориолиса приводит к отклонению потоков воздуха: в северном полушарии — в сторону северо-востока (северо-восточный пассат), в южном полушарии — на юго-восток (юго-восточный пассат).

Циклоном называется атмосферный вихрь с пониженным давлением воздуха в центре. Массы воздуха, стремясь к центру циклона, под действием силы Кориолиса закручиваются против часовой стрелки в северном полушарии и по часовой стрелке в южном. Аналогично, в антициклоне , где в центре имеется максимум давления, наличие силы Кориолиса приводит к вихревому движению по часовой стрелке в северном полушарии и против часовой стрелки в южном. В стационарном состоянии направление движения ветра в циклоне или антициклоне таково, что сила Кориолиса уравновешивает градиент давления между центром и периферией вихря (геострофический ветер ).

Оптические эксперименты

В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка : если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов полосы смещаются на угол

где A — площадь кольца, c — скорость света, омега — угловая скорость вращения. Для демонстрации вращения Земли этот эффект был использован американским физиком Майкельсоном в серии экспериментов, поставленных в 1923–1925 гг. В современных экспериментах, использующих эффект Саньяка, вращение Земли необходимо учитывать для калибровки кольцевых интерферометров.

Правило буравчика в жизни дельфинов

Однако маловероятно, что дельфины способны ощущать эту силу в таком незначительном масштабе, – пишет MIGNews. По другой версии Менджера, дело в том, что животные плавают одном направлении, чтобы держаться группой во время относительной уязвимости в часы полусна. “Когда дельфины бодрствуют, они используют свист, чтобы держаться вместе, – объясняет ученый. – Но во время сна они не хотят шуметь, потому что бояться привлечь внимание”. Но Менджер не знает, почему выбор направления изменяется в связи с полушарием: “Это выше моих сил”, – признает исследователь.

Мнение дилетанта

Итак, имеем сборку:

1. Сила Кориолиса – одна из

5. МАГНИТНОЕ ПОЛЕ - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

6. МАГНИТНАЯ ИНДУКЦИЯ - это силовая характеристика магнитного поля.

7. НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ - определяется по правилу буравчика или по правилу правой руки.

9. Отклонение свободно падающих тел от вертикали.

10. Воронка в ванне

11. Эффект правого берега.

12. Дельфины.

На экваторе провели эксперимент с водой. Севернее экватора при сливе вода вращалась по часовой стрелке, южнее экватора – против часовой стрелки. То, что правый берег выше левого – это вода затаскивает скальную породу наверх.

Сила Кориолиса никакого отношения к вращению Земли не имеет!

Подробное описание трубок связи со спутниками, Луной и Солнцем приведены в монографии “Холодный ядерный синтез”.

Там же эффекты, возникающие при снижении потенциалов отдельных частот в трубках связи.

С 2007 года наблюдались эффекты:

Вращение воды при сливе как по часовой, так и против часовой стрелок, иногда слив производился без вращения.

Дельфины выбрасывались на берег.

Отсутствовала трансформация тока (на входе всё есть, на выходе ничего нет).

При трансформации выходная мощность значительно превосходила входную.

Сгорание трансформаторных подстанций.

Сбои систем связи.

Не работало правило буравчика при магнитной индукции.

Пропал Гольфстрим.

Планируется:

Останов океанских течений.

Останов рек, впадающих в Чёрное море.

Останов рек, впадающих в Аральское море.

Останов Енисея.

Ликвидация трубок связи приведёт к смещению спутников планет на круговые орбиты вокруг Солнца, радиус орбит будет меньше радиуса орбиты Меркурия.

Снятие трубки связи с Солнцем – гашение короны.

Снятие трубки связи с Луной – ликвидация размножения “золотого миллиарда” и “золотого миллиона”, при этом Луна “отъезжает” от Земли на 1200000 км.

В предыдущем параграфе было рассмотрено тело, неподвижное во вращающейся системе отсчета. Если во вращающейся системе отсчета тело движется, то, помимо центробежной силы, на него будет действовать ещё одна сила инерции, называемая силой Кориолиса или кориолисовой силой инерции.

Пусть шарик массой движется без трения вдоль радиуса диска (рис. 8.5) с постоянной скоростью , направленной в некую точку на краю диска.

Рис. 8.5. Отклонение шарика, движущегося во вращающейся системе отсчета

Если диск не вращается, то шарик движется по радиусу и попадает в точку . Если же диск привести во вращение с угловой скоростью , то к моменту достижения шариком края диска на месте точки окажется другая точка . Если шарик оставляет след, то он прочертит свою траекторию относительно диска - кривую линию . При этом на шарик не действуют никакие видимые силы, и относительно инерциальной системы он по-прежнему движется с постоянной скоростью . Скорость же шарика относительно диска изменяла свое направление. Значит, в системе отсчета, связанной с вращающимся диском, на шарик действовала сила инерции, не параллельная скорости . Стало быть, она не была направлена по радиусу, откуда следует, что эта сила отлична от рассмотренной выше центробежной силы инерции. Ее и называют силой Кориолиса .

Рис. 8.6 Движение шарика по гладкой поверхности вращающегося диска. Сверху - с точки зрения внешнего наблюдателя. Снизу - с точки зрения наблюдателя, неподвижного относительно диска

Дополнительная информация

http://kvant.mirror1.mccme.ru/1975/04/sila_koriolisa.html - журнал «Квант» - сила Кориолиса (Я. Смородинский).

Найдем выражение для силы Кориолиса в частном случае (рис. 8.7), когда частица массой движется относительно вращающейся системы отсчета К" равномерно по окружности, лежащей в плоскости, перпендикулярной к оси вращения , с центром на оси вращения.

Рис. 8.7. К выводу выражения для силы Кориолиса

Скорость частицы относительно вращающейся системы К" обозначим через . В неподвижной (инерциальной) системе отсчета К частица также движется по окружности, но ее линейная скорость равна

где - угловая скорость вращающейся системы, - радиус окружности. Для того, чтобы частица двигалась относительно неподвижной системы отсчета K по окружности со скоростью , на нее должна действовать направленная к центру окружности сила (например, натяжение нити), причем величина этой силы равна

Относительно вращающейся системы отсчета K" в этом случае частица движется с ускорением

Из полученного выше уравнения второго закона Ньютона для частицы получаем:

Слева стоит произведение массы на ускорение частицы во вращающейся системе отсчета. Значит, справа должны стоять силы, на нее действующие. Первое слагаемое понятно: это сила натяжения нити, которая одинакова как для инерциальной, так и для неинерциальной систем. С третьим слагаемым мы тоже уже имели дело: это направленная по радиусу (от центра) центробежная сила инерции. Второе слагаемое и есть сила Кориолиса. В данном случае она также направлена от центра, но зависит от скорости частицы. Модуль кориолисовой силы в этом примере равен . Ее направление совпадает с движением штопора, ручка которого поворачивается от вектора скорости к вектору угловой скорости .

Можно показать, что в общем случае сила Кориолиса определяется как

Сила Кориолиса ортогональна вектору скорости. В случае радиального движения, показанного на рис. 8.5, она отклоняла шарик направо, вынуждая его двигаться по траектории .

Возникновение силы Кориолиса при движении тела относительно вращающейся системы отсчета демонстрируется в опыте на рис. 8.6.

Дополнительная информация

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971г. - стр.165–166 (§ 48): опыт Хайкина по демонстрации силы Кориолиса.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Приведем некоторые примеры.

Рис. 8.8. Сила Кориолиса на поверхности Земного шара

В северном полушарии наблюдается более сильное подмывание правых берегов рек, правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, а циклоны вращаются по часовой стрелке. В южном же полушарии все происходит наоборот.

При выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу - в южном (рис. 8.9).

Рис. 8.9. На Земле движущиеся тела отклоняются направо в северном полушарии, и налево в южном

При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к земле, если выстрел произведен на запад, и поднимать его кверху, если выстрел произведен в восточном направлении.

Видео 8.9. Сила Кориолиса: попробуй, попади! Стрельба на вращающейся платформе.

Пример. Поезд массой = 150 тонн идет в меридиональном направлении на север со скоростью = 72 км/ч. Найдем, чему равна кориолисова сила, прижимающая его в боковом направлении к рельсам, и определим, каков эффект действия центробежной силы. Поезд находится на широте Москвы = 56°.

Угол между вектором угловой скорости суточного вращения Земли и касательной к меридиану равен широте места (рис. 8.10).

Рис. 8.10. Кориолисова сила направлена от нас перпендикулярно плоскости рисунка

Поэтому кориолисова сила равна

Подставляя числовые данные, находим

Эта сила соответствует весу массы

и составляет от веса поезда.

Расстояние поезда от оси вращения Земли равно , так что центробежная сила будет

Направлена она по перпендикуляру к оси вращения. Следовательно, ее составляющая

направленная вдоль радиуса Земли, уменьшает вес поезда:

Подставляя числовые данные, получаем

Это соответствует весу массы

и составляет 1,1·10 –3 от веса поезда.

Другая составляющая центробежной силы

направлена по касательной к меридиану и тормозит поезд. Она равна

что соответствует весу массы

и составляет 1,6·10 –3 от веса поезда.

Таким образом, влияние центробежной силы проявляется в десятых долях процента, а проявления кориолисовой силы - на порядок меньше (что связано, разумеется, с небольшой скоростью поезда).

Французский физик Фуко экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Подобный маятник до недавнего времени можно было увидеть в Петербурге в Исаакиевском соборе.

Колебания маятника Фуко зависят от того, как они были возбуждены. Если маятник отклонить на максимальный угол, а затем отпустить его без начальной скорости, то маятник будет колебаться, как изображено на рис. 10. Скорость движения маятника в положении максимального отклонения будет равна нулю.

Рис. 8.12. Колебания маятника Фуко при отклонении на максимальный угол и отпускании без начальной скорости

Несколько иной характер траектории получится, если маятник приводится в движение коротким толчком из положения равновесия. Этому случаю соответствует рис. 8.11. и 8.13. Скорость маятника в положении максимального отклонения соответствует скорости вращения Земли на широте наблюдения.

Рис. 8.13. Колебания маятника Фуко при сообщении ему скорости при отклонении на максимальный угол

Видео 8.10. Настольный маятник Фуко

Дополнительная информация

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971 г. - стр.172–174: движение маятника Фуко.

http://mehanika.3dn.ru/load/24-1-0-3278 - Тарг С.М. Краткий курс теоретической механики, Изд. Высшая школа, 1986 г. - стр. 155–164, §§ 64-67, - преобразования скорости и ускорения материальной точки при переходе из одной системы отсчета в другую, теорема Кориолиса.

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 353–356 (§ 67): выведены формулы для расчета отклонения падающих тел от направления отвеса.

http://kvant.mirror1.mccme.ru/1995/05/komu_nuzhna_vysokaya_bashnya.html - журнал «Квант» - из истории физики - падение тел с Пизанской башни и других высоких построек (А. Стасенко).

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 360–366 (§ 69): проясняются физические причины приливов и отливов в морях и океанах на Земле.

Эффект от силы Кориолиса вступает в заметную силу когда производятся стрельба на очень дальние дистанции как представленная на картинке. Движение Земли вокруг своей оси двигает цель во время полета пули.

Когда вы находитесь на стрельбище, земля на которой вы стоите, кажется стабильной. Но на самом деле это большая сфера, летящая в космосе и одновременно вращающаяся по своей оси, с одним полным оборотом в 24 часа. Вращение земли может создавать проблемы для стрелков на сверхдальние дистанции. Во время продолжительного полета пули, вращение планеты вызывает наглядное отклонение цели от траектории пули при стрельбе на очень дальние дистанции. Это называется корреляционный эффект или эффект корреляции в баллистике.

Брайен Литц (Bryan Litz) из Прикладной Баллистики (Applied Ballistics) выпустил небольшое видео где он объясняет эффект силы Кориолиса. Брайан подмечает что этот эффект " очень незначителен. Стрелки любят возвышать его силу, так как он кажется очень таинственным. " В большинстве случаев при стрельбе до ~ 1000 м., сила Кориолиса не важна в учете. Если пользоваться Американской системой ввода поправок (1/4 MOA угловой минута = ~1" дюйм на 100 ярдов) на 1000 ярдов (914,4 м.) эффект можно будет скорректировать на прицеле одним щелчком (для большинства патронов). Даже после отметки в 1000 ярдов в условиях повышенного ветра, эффект силы Кориолиса может быть " потерян в общем шуме ". Но в очень благоприятных условиях стрельбы без ветра на дальние дистанции, Брайен утверждает что можно получить преимущество в точности используя баллистические решения с учетом корреляционного эффекта.

Браен продолжает: " Эффект силы Кориолиса...связан с вращение Земли. Вы по сути стреляете из одной точки в другую на вращающейся сфере, в инерционной системе координат. Последствия будут такие что если время полета пули будет достаточно продолжительным, пуля будет сносится от своей предполагаемой цели. Количество этого сноса очень мало - оно зависит от географической широты и направления стрельбы относительно планеты. "

Эффект силы Кориолиса очень трудно уловим. Со средним баллистическим коэффициентом и скоростью, у вас будет свободная дистанция до 1000 ярдов, до того как можно будет сделать поправку в один щелчок на прицеле. Брайан говорит: " эффект корреляции это НЕ то о чем следует думать при стрельбе по движущейся цели, это НЕ то о чем следует думать при стрельбе с сильным ветром, так как есть условия которые будут иметь более очевидное влияние, а эффект силы Кориолиса будет отвлекать вас от них. "

" Где действительно можно задуматься об использовании данного эффекта, использовать его на постоянной основе и он будет влиять на ваши показатели - это при стрельбе на сверхдальние дистанции по относительно малым целям в условиях малого ветра. Когда вы знаете скорость пули и баллистический коэффициент очень хорошо и есть безупречные условия, тогда вы заметите влияние силы Кориолиса. Вы получите больше отдачи в вашей деятельности, если будете учитывать эту силу только в вышеприведенных случаях. Но в большинстве случаев практической стрельбы на дальние дистанции, сила Кориолиса НЕ так важна. Что действительно важно это понять ваши приоритеты в стрельбе и учет их в процессе."

Из этой статьи вы не узнаете ничего нового о крутых правых берегах рек северного полушария, о направлениях вращения атмосферных циклонов и антициклонов, о пассатах и о закручивании воды в сливном отверстии ванны или раковины. Эта статья расскажет вам об...

Истоках понятий «ускорение Кориолиса» и «сила Кориолиса».

Прежде чем начать отвечать на вопрос заголовка статьи я хочу напомнить несколько определений. Для упрощения понимания при изучении сложных движений тел в теоретической механике были введены понятия относительного движения и переносного, а так же присущих им скоростей и ускорений.

Относительное движение характеризуется относительной траекторией, относительной скоростью v отн и относительным ускорением a отн и представляет собой движение материальной точки относительно подвижной системы координат.

Переносное движение, характеризующееся переносной траекторией, переносной скоростью v пер и переносным ускорениемa пер , представляет собой движение подвижной системы координат вместе со всеми жестко связанными с ней точками пространства по отношению к неподвижной (абсолютной) системе координат.

Абсолютное движение, характеризующееся абсолютной траекторией, абсолютной скоростью v и абсолютным ускорением a , это — движение точки относительно неподвижной системы координат.

a — вектор

a — абсолютное значение (модуль)

Приношу извинения за отступление от использования общепринятых символов в обозначении векторов.

Основные формулы сложного движения материальной точки в векторной форме :

v - = v отн - + v пер -

a - = a отн - + a пер - + a кор -

Если со скоростью все понятно и логично, то с ускорением все не так очевидно. Что это за третий векторa кор - ? Откуда он взялся? Именно ему – третьему слагаемому векторного уравнения ускорения материальной точки при сложном движении – ускорению Кориолиса — и посвящена эта статья.

Если относительное ускорение является параметром изменения относительной скорости в относительном движении материальной точки, переносное ускорение – параметром изменения переносной скорости в переносном движении, то ускорение Кориолиса характеризует изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении. Непонятно? Разберемся, как обычно, на примере!

Как возникает ускорение Кориолиса

1. На рисунке, расположенном ниже, изображен механизм, состоящий из кулисы, вращающейся с постоянной угловой скоростью ω пер вокруг точки O и ползун, перемещающийся по кулисе с постоянной линейной скоростью v отн . Следовательно, угловое ускорение кулисы и связанной с ней подвижной системы координат (ось x) ε пер равно нулю. Так же равно нулю и линейное ускорение точки C ползуна a отн относительно кулисы (подвижной системы координат – оси х).

ω пер = const ε пер = 0

v отн = const a отн = 0

2. Как можно догадаться по аббревиатурам – относительное движение в нашем примере – это прямолинейное движение ползуна — точки C — по кулисе, а переносное движение – это вращение ползуна вместе кулисой вокруг центра – точки О. Ось x 0 – ось неподвижной системы координат.

3. То, что ускорения ε пер = 0 и a отн = 0 выбрано в примере не случайно. Это облегчит и упростит восприятие и понимание сути и природы возникновения кориолисова ускорения и рождаемой этим ускорением – силы Кориолиса.

4. При переносном движении (вращении кулисы) вектор относительной линейной скорости v отн1 - повернется за малый промежуток времени dt на весьма незначительный угол и получит при этом приращение (изменение) в виде вектора dv отн - .

dφ = ω пер * dt

dv отн - = v отн2 - v отн1 -

dv отн = v отн * dφ = v отн * ω пер * dt

5. Вектор относительной скорости точки C v отн2 - в положении №2 сохранил свой размер и направление относительно подвижной системы координат – оси x. Но в абсолютном пространстве этот вектор повернулся за счет переносного движения на угол и переместился за счет относительного движения на расстояние dS !

6. При стремящемся к нулю угле поворота вектор изменения относительной скорости dv отн - будетперпендикулярен вектору относительной скоростиv отн2 - .

7. Изменение скорости может быть вызвано только наличием ненулевого ускорения, которое и приобретет точка С. Направление вектора этого ускорения a 1 - совпадает с направлением вектора изменения относительной скоростиdv отн - .

a 1 = dv отн / dt = v отн * ω пер

8. При относительном движении (прямолинейном перемещении точки C ползуна по кулисе) вектор переносной линейной скорости v пер - за незначительный промежуток времени dt переместится на расстояние dS и получит приращение (изменение) — вектор dv пер - .

dS = v отн * dt

dv пер - = v пер2 - v пер1 - dv ц пер -

dv пер = ω пер * dS = ω пер * v отн * dt

9. Вектор переносной скорости точки C v пер2 - в положении №2 увеличил свой размер и сохранил направление относительно подвижной системы координат – оси x. В неподвижной системе координат (ось x 0) этот вектор повернулся за счет переносного движения на угол и переместился на расстояние dS благодаря переносному движению!

10. По аналогии с относительной скоростью дополнительное изменение переносной скорости может быть вызвано только наличием ненулевого ускорения, которое приобретет точка С в этом движении. Направление вектора этого ускорения a 2 - совпадает с направлением вектора изменения переносной скоростиdv пер - .

a 2 = dv пер / dt = ω пер * v отн

11. Появление вектора изменения переносной скоростиdv ц пер - в ызвано переносным движением (вращением)! На точку C действует переносное ускорение a пер – в нашем случае центростремительное, вектор которого направлен к центру вращения точке O.

a пер2 = ω пер 2 * S 2

В нашем примере это ускорение действует и в начальный момент времени (в положении №1), его значение равно:

a пер1 = ω пер 2 * S 1

12. Векторыa 1 - иa 2 - имеют одинаковое направление! На рисунке это визуально не совсем так по причине невозможности начертить понятную схему при близком к нулю угле поворота . Чтобы найти полное добавочное ускорение точки C, которое она получила из-за изменения вектора относительной скорости v отн1 - в переносном движении и вектора переносной скоростиv пер1 - в относительном движении необходимо сложить векторыa 1 - иa 2 - . Это и есть ускорение Кориолиса точки C.

a кор - = a 1 - + a 2 -

a кор = a 1 + a 2 = 2 * ω пер * v отн

13. Основные зависимости скорости и ускорения точки C в неподвижной системе координат в векторной и абсолютной формах для нашего примера выглядят так:

v - = v отн - + v пер -

v = (v отн 2 + ω пер 2 * S 2) 0,5

a - = a пер - + a кор -

a = (ω пер 4 * S 2 + a кор 2) 0,5 = (ω пер 4 * S 2 + 4 * ω пер 2 * v отн 2) 0,5

Итоги и выводы

Ускорение Кориолиса возникает при сложном движении точки только при одновременном выполнении трех независимых условий:

1. Переносное движение должно быть вращательным. То есть угловая скорость переносного движения должна быть не равна нулю.

3. Относительное движение должно быть поступательным. То есть линейная скорость относительного движения не должна быть равна нулю.

Для определения направления вектора ускорения Кориолиса необходимо повернуть вектор линейной относительной скорости на 90° в сторону переносного вращения.

Если точка обладает массой, то согласно второму закону Ньютона кориолисово ускорение совместно с массой создадут силу инерции, направленную в сторону противоположную вектору ускорения. Это и есть сила Кориолиса !

Именно сила Кориолиса, действуя на некотором плече, создает момент, который называется гироскопическим моментом!

О гироскопических явлениях можно прочитать в целом ряде других статей этого блога.

Подписывайтесь на анонсы статей в окнах, расположенных в конце каждой статьи или вверху каждой страницы, и не забывайте подтверждать подписку.

В этой статье мне, как всегда, хотелось кратко и доходчиво рассказать о весьма непростых понятиях – об ускорении и силе Кориолиса. Удалось это или нет с интересом прочту в Ваших комментариях, уважаемые читатели!

Понравилась статья? Поделитесь ей
Наверх