Теория вероятности егэ профильный. Решение задач по теории вероятностей в егэ. Теорема сложения вероятностей

Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею - случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте - тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут - и это тоже можно считать счастливой случайностью…

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью . Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.

Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?

Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием .

Орел и решка - два возможных исхода испытания.

Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна .

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.

Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом .

Вероятность выпадения тройки равна (один благоприятный исход из шести возможных).

Вероятность четверки - тоже

А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность не может быть больше единицы.

Вот другой пример. В пакете яблок, из них - красные, остальные - зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна , а зеленое - .

Вероятность достать красное или зеленое яблоко равна .

Определение вероятности. Простые задачи из вариантов ЕГЭ.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.

В фирме такси в данный момент свободно машин: красных, желтых и зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.

Всего имеется машин, то есть к заказчице приедет одна из пятнадцати. Желтых - девять, и значит, вероятность приезда именно желтой машины равна , то есть .

В сборнике билетов по биологии всего билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Очевидно, вероятность вытащить билет без вопроса о грибах равна , то есть .

Родительский комитет закупил пазлов для подарков детям на окончание учебного года, из них с картинами известных художников и с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.

Задача решается аналогично.

Ответ: .

В чемпионате по гимнастике участвуют спортсменок: из России, из США, остальные - из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.

Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен (поскольку из Китая - спортсменок). Ответ: .

Ученика попросили назвать число от до . Какова вероятность того, что он назовет число кратное пяти?

Каждое пятое число из данного множества делится на . Значит, вероятность равна .

Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.

Нечетные числа; - четные. Вероятность нечетного числа очков равна .

Ответ: .

Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.

Как вы думаете, сколько здесь возможных исходов?

Бросаем монету. У этого действия два возможных исхода: орел и решка

Две монеты - уже четыре исхода:

Три монеты? Правильно, исходов, так как .

Два орла и одна решка выпадают в трех случаях из восьми.

Ответ: .

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет очков. Результат округлите до сотых.

Бросаем первую кость - шесть исходов. И для каждого из них возможны еще шесть - когда мы бросаем вторую кость.

Получаем, что у данного действия - бросания двух игральных костей - всего возможных исходов, так как .

А теперь - благоприятные исходы:

Вероятность выпадения восьми очков равна .

Стрелок попадает в цель с вероятностью . Найдите вероятность того, что он попадёт в цель четыре раза выстрела подряд.

Если вероятность попадания равна - следовательно, вероятность промаха . Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна . А вероятность четырех попаданий подряд равна .

Вероятность: логика перебора.

В кармане у Пети было монеты по рублей и монеты по рублей. Петя, не глядя, переложил какие-то монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?

Можно, конечно, обозначить пятирублевые монеты цифрами , а десятирублевые цифрами - а затем посчитать, сколькими способами можно выбрать три элемента из набора .

Однако есть более простое решение:

Кодируем монеты числами: , (это пятирублёвые), (это десятирублёвые). Условие задачи можно теперь сформулировать так:

Есть шесть фишек с номерами от до . Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами и не оказались вместе?

Давайте запишем, что у нас в первом кармане.

Для этого составим все возможные комбинации из набора . Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях и - это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:

Все! Мы перебрали все возможные комбинации, начинающиеся на . Продолжаем:

Всего возможных исходов.

У нас есть условие - фишки с номерами и не должны оказаться вместе. Это значит, например, что комбинация нам не подходит - она означает, что фишки и обе оказались в не в первом, а во втором кармане. Благоприятные для нас исходы - такие, где есть либо только , либо только . Вот они:

134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего благоприятных исходов.

Тогда искомая вероятность равна .

Сумма событий, произведение событий и их комбинации

Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть – вероятность того, что чайник прослужил больше года.

– вероятность того, что он сломается на второй год, – вероятность того, что он прослужит больше двух лет. Очевидно,

Ответ: 0,06

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.

Вероятность суммы несовместных событий равна сумме их вероятностей.
В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» - несовместные. Чайник или сломался, или остается в рабочем состоянии.

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.

Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.

Он может либо выйти в выход D, и вероятность этого события равна Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью На каждой развилке вероятность свернуть в ту или другую сторону равна а поскольку развилок пять, вероятность выбраться через выход А равна то есть 0,03125.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

(А) Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй - два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 - для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?

Вероятность для первого грузовика благополучно одолеть горку Для второго Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью

Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства - яйца высшей категории, а из второго хозяйства - 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.

Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.

Пусть вероятность того, что купленное яйцо из первого хозяйства, равна . Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна .

Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% - не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.

Во втором хозяйстве 20% яиц высшей категории, а 80% - не высшей.

Пусть случайно выбранное в магазине яйцо - из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей:

Вероятность того, что яйцо из второго хозяйства и высшей категории, равна

Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.

Мы получили уравнение:

Решаем это уравнение и находим, что – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.

Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).

Пациенту делают анализ. Покажем на схеме все возможные исходы:

Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.

Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.

Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна

Ответ: 0,0545.

Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов - математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов - математика, русский язык и обществознание.

Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку - 0,8, по иностранному языку - 0,7 и по обществознанию - 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознания или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна

Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна

В результате вероятность сдать математику, русский и обществознание или иностранный равна Это ответ.

Чтобы полностью освоить тему, смотрите . Это бесплатно.

Еще задачи ЕГЭ по теме

Случайное событие – любое событие, которое может произойти, а может и не произойти в результате какого-либо опыта.

Вероятность события р равна отношению числа благоприятных исходов k к числу всевозможных исходов n , т.е.

p=\frac{k}{n}

Формулы сложения и умножения теории вероятности

Событие \bar{A} называется противоположным событию A, если не произошло событие A.

Сумма вероятностей противоположных событий равна единице, т.е.

P(\bar{A}) + P(A) =1

  • Вероятность события не может быть больше 1.
  • Если вероятность события равна 0, то оно не случится.
  • Если вероятность события равна 1, то оно произойдет.

Теорема сложения вероятностей:

«Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий.»

P(A+B) = P(A) + P(B)

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

P(A+B) = P(A) + P(B) - P(AB)

Теорема умножения вероятностей

«Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.»

P(AB)=P(A)*P(B)

События называются несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

События называются совместными , если наступление одного из них не исключает наступления другого.

Два случайных события А и В называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

На заводе керамической плитки 5% произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40% дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.

Показать решение

Решение

При контроле качества продукции выявляется 40% дефектных плиток, которые составляют 5% от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2% от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98% поступает в продажу.

Не имеет дефектов 100% − 95% произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98% = \frac{95}{98}\approx 0,97

Ответ

Условие

Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.

Показать решение

Решение

Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A \cap B, его вероятность равна P(A \cap B) = P(A)\cdot P(B) = 0,85\cdot 0,85 = 0,7225.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065 . В некотором городе в течение года было продано 1200 стиральных машин, из которых 72 штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?

Показать решение

Решение

Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна \frac{72}{1200} = 0,06. От вероятности она отличается на 0,065-0,06=0,005.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Вероятность того, что ручка бракованная, равна 0,05 . Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.

Показать решение

Решение

Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий A\cap B, его вероятность равна P(A\cap B) = P(A)\cdot P(B) = 0,95\cdot 0,95 = 0,9025.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.

Показать решение

Решение

Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).

Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.

Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна \frac12\cdot\frac12\cdot\frac12\cdot\frac12= 0,5^4= 0,0625.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

В секции 16 спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4 равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.

Теория вероятностей на ЕГЭ по математике может быть представлена как в виде простых задач на классическое определение вероятности, так и в виде достаточно сложных, на применение соответствующих теорем.

В этой части рассмотрим задачи, для решения которых достаточно применения определения вероятности. Иногда здесь мы будем применять также формулу для вычисления вероятности противоположного события. Хотя без этой формулы здесь можно обойтись, она все равно понадобится при решении следующих задач.

Теоретическая часть

Случайным называют событие, которое может произойти или не произойти (заранее предсказать невозможно) во время наблюдения или испытания.

Пусть при проведении испытания (бросание монеты или кубика, вытягивание экзаменационного билета и т. д.) возможны равновозможных исходов. Например, при подбрасывании монеты число всех исходов равно 2, так как кроме выпадения «решки» или «орла» других исходов быть не может. При броске игрального кубика возможны 6 исходов, так как на верхней грани кубика равновозможно появление любого из чисел от 1 до 6. Пусть также некоторому событию А благоприятствуют исходов.

Вероятностью события А называется отношение числа благоприятных для этого события исходов к общему числу равновозможных исходов (это классическое определение вероятности). Пишем

Например, пусть событие А состоит в выпадении нечётного числа очков при бросании кубика. Всего возможны 6 исходов: выпадение на верхней грани кубика 1, 2, 3, 4, 5, 6. При этом благоприятными для события А являются исходы с выпадением 1, 3, 5. Таким образом, .

Заметим, что всегда выполняется двойное неравенство , поэтому вероятность любого события А лежит на отрезке , то есть . Если у вас в ответе вероятность получается больше единицы, значит, вы где-то ошиблись и решение нужно перепроверить.

События А и В называются противоположными друг другу, если любой исход благоприятен ровно для одного из них.

Например, при бросании кубика событие «выпало нечётное число» является противоположным событию «выпало чётное число».

Событие, противоположное событию А, обозначают. Из определения противоположных событий следует
, значит,
.

Задачи о выборе объектов из набора

Задача 1. В чемпионате мира участвуют 24 команды. С помощью жребия их нужно разделить на четыре группы по шесть команд в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе?

Общее число исходов равно числу карточек – их 24. Благоприятных исходов 6 (так как номер 3 написан на шести карточках). Искомая вероятность равна .

Ответ: 0,25.

Задача 2. В урне 14 красных, 9 жёлтых и 7 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым?

Общее число исходов равно числу шаров: 14 + 9 + 7 = 30. Число исходов, благоприятствующих данному событию, равно 9. Искомая вероятность равна равна .

Задача 3. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной и больше 5?

Исходом здесь является нажатие определённой клавиши, поэтому всего имеется 10 равновозможных исходов. Указанному событию благоприятствуют исходы, означающие нажатие клавиши 6 или 8. Таких исходов два. Искомая вероятность равна .

Ответ: 0,2.

Задача 4 . Какова вероятность того, что случайно выбранное натуральное число от 4 до 23 делится на три?

На отрезке от 4 до 23 имеется 23 – 4 + 1 = 20 натуральных чисел, значит, всего возможны 20 исходов. На этом отрезке кратны трём следующие числа: 6, 9, 12, 15, 18, 21. Всего таких чисел 6, поэтому рассматриваемому событию благоприятствуют 6 исходов. Искомая вероятность равна .

Ответ: 0,3.

Задача 5. Из 20 билетов, предлагаемых на экзамене, школьник может ответить только на 17. Какова вероятность того, что школьник не сможет ответить на выбранный наугад билет?

1 -й способ.

Так как школьник может ответить на 17 билетов, то на 3 билета он ответить не может. Вероятность получить один из этих билетов по определению равна .

2-й способ.

Обозначим через А событие «школьник может ответить на билет». Тогда . Вероятность противоположного события равна =1 – 0,85 = 0,15.

Ответ: 0,15.

Задача 6 . В чемпионате по художественной гимнастике участвуют 20 спортсменок: 6 из России, 5 из Германии, остальные – из Франции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая седьмой, окажется из Франции.

Всего 20 спортсменок, у всех равные шансы выступать седьмой. Поэтому имеются 20 равновероятных исходов. Из Франции 20 – 6 – 5 = 9 спортсменок, поэтому имеются 9 благоприятных для указанного события исходов. Искомая вероятность равна .

Ответ: 0,45.

Задача 7. Научная конференция проводится в 5 дней. Всего запланировано 50 докладов – первые три дня по 12 докладов, остальные распределены поровну между четвёртым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора Н. окажется запланированным на последний день конференции?

Сначала найдём, сколько докладов запланировано на последний день. На первые три дня запланировано докладов. Остаются ещё 50 – 36 = 14 докладов, которые распределяются поровну между оставшимися двумя днями, поэтому в последний день запланировано докладов.

Будем считать исходом порядковый номер доклада профессора Н. Всего таких равновозможных исходов 50. Благоприятствуют указанному событию 7 исходов (последние 7 номеров в списке докладов). Искомая вероятность равна .

Ответ: 0,14.

Задача 8 . На борту самолёта 10 мест рядом с запасными выходами и 15 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажиров высокого роста. Пассажир К. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру К. достанется удобное место, если всего в самолёте 200 мест.

Исход в этой задаче – выбор места. Всего имеется 200 равновозможных исходов. Благоприятствуют событию «выбранное место удобное» 15 + 10 = 25 исходов. Искомая вероятность равна .

Ответ: 0,125.

Задача 9 . Из 1000 собранных на заводе кофемолок 7 штук бракованных. Эксперт проверяет одну наугад выбранную кофемолку из этой 1000. Найдите вероятность того, что проверяемая кофемолка окажется бракованной.

При выборе кофемолки наугад возможны 1000 исходов, событию А «выбранная кофемолка бракованная» благоприятны 7 исходов. По определению вероятности .

Ответ: 0,007.

Задача 10. Завод производит холодильники. В среднем на 100 качественных холодильников приходится 15 холодильников со скрытыми дефектами. Найдите вероятность того, что купленный холодильник окажется качественным. Результат округлите до сотых.

Эта задача похожа на предыдущую. Однако формулировка «на 100 качественных холодильников приходится 15 с дефектами» указывает нам, что дефектные 15 штук не входят в 100 качественных . Поэтому общее число исходов равно 100 + 15 =115 (равно общему числу холодильников), благоприятных исходов 100. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Получаем 0,869…, что 0,87.

Ответ: 0,87.

Задача 11 . Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 теннисистов, среди которых 7 участников из России, в том числе Максим Зайцев. Найдите вероятность того, что в первом туре Максим Зайцев будет играть с каким-либо теннисистом из России.

Как и в предыдущей задаче, необходимо внимательно прочитать условие и понять, что является исходом, а что – благоприятным исходом (так, неосмысленное применение формулы вероятности приводит к неправильному ответу ).

Здесь исход – это соперник Максима Зайцева. Так как всего теннисистов 16, а сам с собой Максим играть не может, то имеется 16 – 1 = 15 равновероятных исходов. Благоприятный исход – соперник из России. Таких благоприятных исходов 7 – 1 = 6 (из числа россиян исключаем самого Максима). Искомая вероятность равна .

Ответ: 0,4.

Задача 12. Футбольную секцию посещают 33 человека, среди них два брата – Антон и Дмитрий. Посещающих секцию случайным образом делят на три команды по 11 человек в каждой. Найдите вероятность того, что Антон и Дмитрий окажутся в одной команде.

Сформируем команды, последовательно помещая футболистов на свободные места, при этом начнем с Антона и Дмитрия. Сначала поместим Антона на случайно выбранное место из свободных 33. Теперь помещаем на свободное место Дмитрия (исходом будем считать выбор места для него). Всего имеется 32 свободных места (одно уже занял Антон), поэтому всего возможны 32 исхода. В одной команде с Антоном остается 10 свободных мест, поэтому событию «Антон и Дмитрий в одной команде» благоприятствуют 10 исходов. Вероятность этого события равна .

Ответ: 0,3125.

Задача 13 . Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 11, но не дойдя до отметки 2 часа.

Условно циферблат можно разделить на 12 секторов, располагающихся между отметками соседних чисел (между 12 и 1, 1 и 2, 2 и 3, …, 11 и 12). Исходом мы будем считать остановку часовой стрелки в одном из указанных секторов. Всего есть 12 равновозможных исходов. Указанному событию благоприятствуют три исхода (сектора между 11 и 12, 12 и 1, 1 и 2). Искомая вероятность равна .

Ответ: 0,25.

Подведем итог

После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram . Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму .

Спасибо, что поделились статьей в социальных сетях

Источник “Подготовка к ЕГЭ. Математика.Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Вероятностью события $А$ называется отношение числа благоприятных для $А$ исходов к числу всех равновозможных исходов

$P(A)={m}/{n}$, где $n$ – общее количество возможных исходов, а $m$ – количество исходов, благоприятствующих событию $А$.

Вероятность события - это число из отрезка $$

В фирме такси в наличии $50$ легковых автомобилей. $35$ из них чёрные, остальные - жёлтые. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета.

Найдем количество желтых автомобилей:

Всего имеется $50$ автомобилей, то есть на вызов приедет одна из пятидесяти. Желтых автомобилей $15$, следовательно, вероятность приезда именно желтого автомобиля равна ${15}/{50}={3}/{10}=0,3$

Ответ:$0,3$

Противоположные события

Два события называются противоположными, если в данном испытании они несовместимы и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1.Событие, противоположное событию $А$, записывают ${(А)}↖{-}$.

$Р(А)+Р{(А)}↖{-}=1$

Независимые события

Два события $А$ и $В$ называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае события называются зависимыми.

Вероятность произведения двух независимых событий $A$ и $B$ равна произведению этих вероятностей:

$Р(А·В)=Р(А)·Р(В)$

Иван Иванович купил два различных лотерейных билета. Вероятность того, что выиграет первый лотерейный билет, равна $0,15$. Вероятность того, что выиграет второй лотерейный билет, равна $0,12$. Иван Иванович участвует в обоих розыгрышах. Считая, что розыгрыши проводятся независимо друг от друга, найдите вероятность того, что Иван Иванович выиграет в обоих розыгрышах.

Вероятность $Р(А)$ - выиграет первый билет.

Вероятность $Р(В)$ - выиграет второй билет.

События $А$ и $В$ – это независимые события. То есть, чтобы найти вероятность того, что они произойдут оба события, нужно найти произведение вероятностей

$Р(А·В)=Р(А)·Р(В)$

$Р=0,15·0,12=0,018$

Ответ: $0,018$

Несовместные события

Два события $А$ и $В$ называют несовместными, если отсутствуют исходы, благоприятствующие одновременно как событию $А$, так и событию $В$. (События, которые не могут произойти одновременно)

Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

На экзамене по алгебре школьнику достается один вопрос их всех экзаменационных. Вероятность того, что это вопрос на тему «Квадратные уравнения», равна $0,3$. Вероятность того, что это вопрос на тему «Иррациональные уравнения», равна $0,18$. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Данные события называются несовместные, так как школьнику достанется вопрос ЛИБО по теме «Квадратные уравнения», ЛИБО по теме «Иррациональные уравнения». Одновременно темы не могут попасться. Вероятность суммы двух несовместных событий $A$ и $B$ равна сумме вероятностей этих событий:

$Р(А+В)=Р(А)+Р(В)$

$Р = 0,3+0,18=0,48$

Ответ: $0,48$

Совместные события

Два события называются совместными, если появление одного из них не исключает появление другого в одном и том же испытании. В противном случае события называются несовместными.

Вероятность суммы двух совместных событий $A$ и $B$ равна сумме вероятностей этих событий минус вероятность их произведения:

$Р(А+В)=Р(А)+Р(В)-Р(А·В)$

В холле кинотеатра два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна $0,6$. Вероятность того, что кофе закончится в обоих автоматах, равна $0,32$. Найдите вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов.

Обозначим события, пусть:

$А$ = кофе закончится в первом автомате,

$В$ = кофе закончится во втором автомате.

$A·B =$ кофе закончится в обоих автоматах,

$A + B =$ кофе закончится хотя бы в одном автомате.

По условию, $P(A) = P(B) = 0,6; P(A·B) = 0,32$.

События $A$ и $B$ совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

$P(A + B) = P(A) + P(B) − P(A·B) = 0,6 + 0,6 − 0,32 = 0,88$

Понравилась статья? Поделитесь ей
Наверх