Понятие главных компонент. Как работает метод главных компонент (PCA) на простом примере Метод главных компонент в r

Метод главных компонент – это метод, который переводит большое количество связанных между собой (зависимых, коррелирующих) переменных в меньшее количество независимых переменных, так как большое количество переменных часто затрудняет анализ и интерпретацию информации. Строго говоря, этот метод не относится к факторному анализу, хотя и имеет с ним много общего. Специфическим является, во-первых, то, что в ходе вычислительных процедур одновременно получают все главные компоненты и их число первоначально равно числу исходных переменных; во-вторых, постулируется возможность полного разложения дисперсии всех исходных переменных, т.е. ее полное объяснение через латентные факторы (обобщенные признаки).

Например, представим, что мы провели исследование, в котором измерили у студентов интеллект по тесту Векслера, тесту Айзенка, тесту Равена, а также успеваемость по социальной, когнитивной и общей психологии. Вполне возможно, что показатели различных тестов на интеллект будут коррелировать между собой, так как они, в конце концов, измеряют одну характеристику испытуемого – его интеллектуальные способности, хотя и по-разному. Если переменных в исследовании слишком много (x 1 , x 2 , …, x p ) , а некоторые из них взаимосвязаны, то у исследователя иногда возникает желание уменьшить сложность данных, сократив количество переменных. Для этого и служит метод главных компонент, который создает несколько новых переменных y 1 , y 2 , …, y p , каждая из которых является линейной комбинацией первоначальных переменных x 1 , x 2 , …, x p :

y 1 =a 11 x 1 +a 12 x 2 +…+a 1p x p

y 2 =a 21 x 1 +a 22 x 2 +…+a 2p x p

(1)

y p =a p1 x 1 +a p2 x 2 +…+a pp x p

Переменные y 1 , y 2 , …, y p называются главными компонентами или факторами. Таким образом, фактор – это искусственный статистический показатель, возникающий в результате специальных преобразований корреляционной матрицы . Процедура извлечения факторов называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, определяемые в результате факторизации, как правило, не равноценны по своему значению.

Коэффициенты a ij , определяющие новую переменную, выбираются таким образом, чтобы новые переменные (главные компоненты, факторы) описывали максимальное количество вариативности данных и не коррелировали между собой. Часто полезно представить коэффициенты a ij таким образом, чтобы они представляли собой коэффициент корреляции между исходной переменной и новой переменной (фактором). Это достигается умножением a ij на стандартное отклонение фактора. В большинстве статистических пакетов так и делается (в программе STATISTICA тоже). Коэффициенты a ij Обычно они представляются в виде таблицы, где факторы располагаются в виде столбцов, а переменные в виде строк:

Такая таблица называется таблицей (матрицей) факторных нагрузок. Числа, приведенные в ней, являются коэффициентами a ij .Число 0,86 означает, что корреляция между первым фактором и значением по тесту Векслера равна 0,86. Чем выше факторная нагрузка по абсолютной величине, тем сильнее связь переменной с фактором.

В этой статье я бы хотел рассказать о том, как именно работает метод анализа главных компонент (PCA – principal component analysis) с точки зрения интуиции, стоящей за ее математическим аппаратом. Максимально просто, но подробно.

Математика вообще очень красивая и изящная наука, но порой ее красота скрывается за кучей слоев абстракции. Показать эту красоту лучше всего на простых примерах, которые, так сказать, можно покрутить, поиграть и пощупать, потому что в конце концов все оказывается гораздо проще, чем кажется на первый взгляд – самое главное понять и представить.

В анализе данных, как и в любом другом анализе, порой бывает нелишним создать упрощенную модель, максимально точно описывающую реальное положение дел. Часто бывает так, что признаки довольно сильно зависят друг от друга и их одновременное наличие избыточно.

К примеру, расход топлива у нас меряется в литрах на 100 км, а в США в милях на галлон. На первый взгляд, величиные разные, но на самом деле они строго зависят друг от друга. В миле 1600км, а в галлоне 3.8л. Один признак строго зависит от другого, зная один, знаем и другой.

Но гораздо чаще бывает так, что признаки зависят друг от друга не так строго и (что важно!) не так явно. Объем двигателя в целом положительно влияет на разгон до 100 км/ч, но это верно не всегда. А еще может оказаться, что с учетом не видимых на первый взгляд факторов (типа улучшения качества топлива, использования более легких материалов и прочих современных достижений), год автомобиля не сильно, но тоже влияет на его разгон.

Зная зависимости и их силу, мы можем выразить несколько признаков через один, слить воедино, так сказать, и работать уже с более простой моделью. Конечно, избежать потерь информации, скорее всего не удастся, но минимизировать ее нам поможет как раз метод PCA.

Выражаясь более строго, данный метод аппроксимирует n-размерное облако наблюдений до эллипсоида (тоже n-мерного), полуоси которого и будут являться будущими главными компонентами. И при проекции на такие оси (снижении размерности) сохраняется наибольшее количество информации.

Шаг 1. Подготовка данных

Здесь для простоты примера я не буду брать реальные обучающие датасеты на десятки признаков и сотни наблюдений, а сделаю свой, максимально простой игрушечный пример. 2 признака и 10 наблюдений будет вполне достаточно для описания того, что, а главное – зачем, происходит в недрах алгоритма.

Сгенерируем выборку:

X = np.arange(1,11) y = 2 * x + np.random.randn(10)*2 X = np.vstack((x,y)) print X OUT: [[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. ] [ 2.73446908 4.35122722 7.21132988 11.24872601 9.58103444 12.09865079 13.78706794 13.85301221 15.29003911 18.0998018 ]]

В данной выборке у нас имеются два признака, сильно коррелирующие друг с другом. С помощью алгоритма PCA мы сможем легко найти признак-комбинацию и, ценой части информации, выразить оба этих признака одним новым. Итак, давайте разбираться!

Для начала немного статистики. Вспомним, что для описания случайной величины используются моменты. Нужные нам – мат. ожидание и дисперсия. Можно сказать, что мат. ожидание – это «центр тяжести» величины, а дисперсия – это ее «размеры». Грубо говоря, мат. ожидание задает положение случайной величины, а дисперсия – ее размер.

Сам процесс проецирования на вектор никак не влияет на значения средних, так как для минимизации потерь информации наш вектор должен проходить через центр нашей выборки. Поэтому нет ничего страшного, если мы отцентрируем нашу выборку – линейно сдвинем ее так, чтобы средние значения признаков были равны 0. Это очень сильно упростит наши дальнейшие вычисления (хотя, стоит отметить, что можно обойтись и без центрирования).
Оператор, обратный сдвигу будет равен вектору изначальных средних значений – он понадобится для восстановления выборки в исходной размерности.

Xcentered = (X - x.mean(), X - y.mean()) m = (x.mean(), y.mean()) print Xcentered print "Mean vector: ", m OUT: (array([-4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5]), array([-8.44644233, -8.32845585, -4.93314426, -2.56723136, 1.01013247, 0.58413394, 1.86599939, 7.00558491, 4.21440647, 9.59501658])) Mean vector: (5.5, 10.314393916)

Дисперсия же сильно зависит от порядков значений случайной величины, т.е. чувствительна к масштабированию. Поэтому если единицы измерения признаков сильно различаются своими порядками, крайне рекомендуется стандартизировать их. В нашем случае значения не сильно разнятся в порядках, так что для простоты примера мы не будем выполнять эту операцию.

Шаг 2. Ковариационная матрица

В случае с многомерной случайной величиной (случайным вектором) положение центра все так же будет являться мат. ожиданиями ее проекций на оси. А вот для описания ее формы уже недостаточно толькое ее дисперсий по осям. Посмотрите на эти графики, у всех трех случайных величин одинаковые мат.ожидания и дисперсии, а их проекции на оси в целом окажутся одинаковы!


Для описания формы случайного вектора необходима ковариационная матрица.

Это матрица, у которой (i,j) -элемент является корреляцией признаков (X i , X j). Вспомним формулу ковариации:

В нашем случае она упрощается, так как E(X i) = E(X j) = 0:

Заметим, что когда X i = X j:

и это справедливо для любых случайных величин.

Таким образом, в нашей матрице по диагонали будут дисперсии признаков (т.к. i = j), а в остальных ячейках – ковариации соответствующих пар признаков. А в силу симметричности ковариации матрица тоже будет симметрична.

Замечание: Ковариационная матрица является обобщением дисперсии на случай многомерных случайных величин – она так же описывает форму (разброс) случайной величины, как и дисперсия.

И действительно, дисперсия одномерной случайной величины – это ковариационная матрица размера 1x1, в которой ее единственный член задан формулой Cov(X,X) = Var(X).

Итак, сформируем ковариационную матрицу Σ для нашей выборки. Для этого посчитаем дисперсии X i и X j , а также их ковариацию. Можно воспользоваться вышенаписанной формулой, но раз уж мы вооружились Python’ом, то грех не воспользоваться функцией numpy.cov(X) . Она принимает на вход список всех признаков случайной величины и возвращает ее ковариационную матрицу и где X – n-мерный случайный вектор (n-количество строк). Функция отлично подходит и для расчета несмещенной дисперсии, и для ковариации двух величин, и для составления ковариационной матрицы.
(Напомню, что в Python матрица представляется массивом-столбцом массивов-строк.)

Covmat = np.cov(Xcentered) print covmat, "n" print "Variance of X: ", np.cov(Xcentered) print "Variance of Y: ", np.cov(Xcentered) print "Covariance X and Y: ", np.cov(Xcentered) OUT: [[ 9.16666667 17.93002811] [ 17.93002811 37.26438587]] Variance of X: 9.16666666667 Variance of Y: 37.2643858743 Covariance X and Y: 17.9300281124

Шаг 3. Собственные вектора и значения (айгенпары)

О"кей, мы получили матрицу, описывающую форму нашей случайной величины, из которой мы можем получить ее размеры по x и y (т.е. X 1 и X 2), а также примерную форму на плоскости. Теперь надо надо найти такой вектор (в нашем случае только один), при котором максимизировался бы размер (дисперсия) проекции нашей выборки на него.

Замечание: Обобщение дисперсии на высшие размерности - ковариационная матрица, и эти два понятия эквивалентны. При проекции на вектор максимизируется дисперсия проекции, при проекции на пространства больших порядков – вся ее ковариационная матрица.

Итак, возьмем единичный вектор на который будем проецировать наш случайный вектор X. Тогда проекция на него будет равна v T X. Дисперсия проекции на вектор будет соответственно равна Var(v T X). В общем виде в векторной форме (для центрированных величин) дисперсия выражается так:

Соответственно, дисперсия проекции:

Легко заметить, что дисперсия максимизируется при максимальном значении v T Σv. Здесь нам поможет отношение Рэлея. Не вдаваясь слишком глубоко в математику, просто скажу, что у отношения Рэлея есть специальный случай для ковариационных матриц:

Последняя формула должна быть знакома по теме разложения матрицы на собственные вектора и значения. x является собственным вектором, а λ – собственным значением. Количество собственных векторов и значений равны размеру матрицы (и значения могут повторяться).

Кстати, в английском языке собственные значения и векторы именуются eigenvalues и eigenvectors соответственно.
Мне кажется, это звучит намного более красиво (и кратко), чем наши термины.

Таким образом, направление максимальной дисперсии у проекции всегда совпадает с айгенвектором имеющим максимальное собственное значение, равное величине этой дисперсии .

И это справедливо также для проекций на большее количество измерений – дисперсия (ковариационная матрица) проекции на m-мерное пространство будет максимальна в направлении m айгенвекторов, имеющих максимальные собственные значения.

Размерность нашей выборки равна двум и количество айгенвекторов у нее, соответственно, 2. Найдем их.

В библиотеке numpy реализована функция numpy.linalg.eig(X) , где X – квадратная матрица. Она возвращает 2 массива – массив айгензначений и массив айгенвекторов (векторы-столбцы). И векторы нормированы - их длина равна 1. Как раз то, что надо. Эти 2 вектора задают новый базис для выборки, такой что его оси совпадают с полуосями аппроксимирующего эллипса нашей выборки.



На этом графике мы апроксимировали нашу выборку эллипсом с радиусами в 2 сигмы (т.е. он должен содержать в себе 95% всех наблюдений – что в принципе мы здесь и наблюдаем). Я инвертировал больший вектор (функция eig(X) направляла его в обратную сторону) – нам важно направление, а не ориентация вектора.

Шаг 4. Снижение размерности (проекция)

Наибольший вектор имеет направление, схожее с линией регрессии и спроецировав на него нашу выборку мы потеряем информацию, сравнимую с суммой остаточных членов регрессии (только расстояние теперь евклидово, а не дельта по Y). В нашем случае зависимость между признаками очень сильная, так что потеря информации будет минимальна. «Цена» проекции - дисперсия по меньшему айгенвектору - как видно из предыдущего графика, очень невелика.

Замечание: диагональные элементы ковариационной матрицы показывают дисперсии по изначальному базису, а ее собственные значения – по новому (по главным компонентам).

Часто требуется оценить объем потерянной (и сохраненной) информации. Удобнее всего представить в процентах. Мы берем дисперсии по каждой из осей и делим на общую сумму дисперсий по осям (т.е. сумму всех собственных чисел ковариационной матрицы).
Таким образом, наш больший вектор описывает 45.994 / 46.431 * 100% = 99.06%, а меньший, соответственно, примерно 0.94%. Отбросив меньший вектор и спроецировав данные на больший, мы потеряем меньше 1% информации! Отличный результат!

Замечание: На практике, в большинстве случаев, если суммарная потеря информации составляет не более 10-20%, то можно спокойно снижать размерность.

Для проведения проекции, как уже упоминалось ранее на шаге 3, надо провести операцию v T X (вектор должен быть длины 1). Или, если у нас не один вектор, а гиперплоскость, то вместо вектора v T берем матрицу базисных векторов V T . Полученный вектор (или матрица) будет являться массивом проекций наших наблюдений.

V = (-vecs, -vecs) Xnew = dot(v,Xcentered) print Xnew OUT: [ -9.56404107 -9.02021624 -5.52974822 -2.96481262 0.68933859 0.74406645 2.33433492 7.39307974 5.3212742 10.59672425]

dot(X,Y) - почленное произведение (так мы перемножаем векторы и матрицы в Python)

Нетрудно заметить, что значения проекций соответствуют картине на предыдущем графике.

Шаг 5. Восстановление данных

С проекцией удобно работать, строить на ее основе гипотезы и разрабатывать модели. Но не всегда полученные главные компоненты будут иметь явный, понятный постороннему человеку, смысл. Иногда полезно раскодировать, к примеру, обнаруженные выбросы, чтобы посмотреть, что за наблюдения за ними стоят.

Это очень просто. У нас есть вся необходимая информация, а именно координаты базисных векторов в исходном базисе (векторы, на которые мы проецировали) и вектор средних (для отмены центровки). Возьмем, к примеру, наибольшее значение: 10.596… и раскодируем его. Для этого умножим его справа на транспонированный вектор и прибавим вектор средних, или в общем виде для всей выбоки: X T v T +m

Xrestored = dot(Xnew,v) + m print "Restored: ", Xrestored print "Original: ", X[:,9] OUT: Restored: [ 10.13864361 19.84190935] Original: [ 10. 19.9094105]

Разница небольшая, но она есть. Ведь потерянная информация не восстанавливается. Тем не менее, если простота важнее точности, восстановленное значение отлично аппроксимирует исходное.

Вместо заключения – проверка алгоритма

Итак, мы разобрали алгоритм, показали как он работает на игрушечном примере, теперь осталось только сравнить его с PCA, реализованным в sklearn – ведь пользоваться будем именно им.

From sklearn.decomposition import PCA pca = PCA(n_components = 1) XPCAreduced = pca.fit_transform(transpose(X))

Параметр n_components указывает на количество измерений, на которые будет производиться проекция, то есть до скольки измерений мы хотим снизить наш датасет. Другими словами – это n айгенвекторов с самыми большими собственными числами. Проверим результат снижения размерности:

Print "Our reduced X: n", Xnew print "Sklearn reduced X: n", XPCAreduced OUT: Our reduced X: [ -9.56404106 -9.02021625 -5.52974822 -2.96481262 0.68933859 0.74406645 2.33433492 7.39307974 5.3212742 10.59672425] Sklearn reduced X: [[ -9.56404106] [ -9.02021625] [ -5.52974822] [ -2.96481262] [ 0.68933859] [ 0.74406645] [ 2.33433492] [ 7.39307974] [ 5.3212742 ] [ 10.59672425]]

Мы возвращали результат как матрицу вектор-столбцов наблюдений (это более канонический вид с точки зрения линейной алгебры), PCA в sklearn же возвращает вертикальный массив.

В принципе, это не критично, просто стоит отметить, что в линейной алгебре канонично записывать матрицы через вектор-столбцы, а в анализе данных (и прочих связанных с БД областях) наблюдения (транзакции, записи) обычно записываются строками.

Проверим и прочие параметры модели – функция имеет ряд атрибутов, позволяющих получить доступ к промежуточным переменным:

Вектор средних: mean_
- Вектор(матрица) проекции: components_
- Дисперсии осей проекции (выборочная): explained_variance_
- Доля информации (доля от общей дисперсии): explained_variance_ratio_

Замечание: explained_variance_ показывает выборочную дисперсию, тогда как функция cov() для построения ковариационной матрицы рассчитывает несмещенные дисперсии!

Сравним полученные нами значения со значениями библиотечной функции.

Print "Mean vector: ", pca.mean_, m print "Projection: ", pca.components_, v print "Explained variance ratio: ", pca.explained_variance_ratio_, l/sum(l) OUT: Mean vector: [ 5.5 10.31439392] (5.5, 10.314393916) Projection: [[ 0.43774316 0.89910006]] (0.43774316434772387, 0.89910006232167594) Explained variance: [ 41.39455058] 45.9939450918 Explained variance ratio: [ 0.99058588] 0.990585881238

Единственное различие – в дисперсиях, но как уже упоминалось, мы использовали функцию cov(), которая использует несмещенную дисперсию, тогда как атрибут explained_variance_ возвращает выборочную. Они отличаются только тем, что первая для получения мат.ожидания делит на (n-1), а вторая – на n. Легко проверить, что 45.99 ∙ (10 - 1) / 10 = 41.39.

Все остальные значения совпадают, что означает, что наши алгоритмы эквивалентны. И напоследок замечу, что атрибуты библиотечного алгоритма имеют меньшую точность, поскольку он наверняка оптимизирован под быстродействие, либо просто для удобства округляет значения (либо у меня какие-то глюки).

Замечание: библиотечный метод автоматически проецирует на оси, максимизирующие дисперсию. Это не всегда рационально. К примеру, на данном рисунке неаккуратное снижение размерности приведет к тому, что классификация станет невозможна. Тем не менее, проекция на меньший вектор успешно снизит размерность и сохранит классификатор.

Итак, мы рассмотрели принципы работы алгоритма PCA и его реализации в sklearn. Я надеюсь, эта статья была достаточно понятна тем, кто только начинает знакомство с анализом данных, а также хоть немного информативна для тех, кто хорошо знает данный алгоритм. Интуитивное представление крайне полезно для понимания того как работает метод, а понимание очень важно для правильной настройки выбранной модели. Спасибо за внимание!

P.S.: Просьба не ругать автора за возможные неточности. Автор сам в процессе знакомства с дата-анализом и хочет помочь таким же как он в процессе освоения этой удивительной области знаний! Но конструктивная критика и разнообразный опыт всячески приветствуются!

ПРИМЕНЕНИЕ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ

ДЛЯ ОБРАБОТКИ МНОГОМЕРНЫХ СТАТИСТИЧЕСКИХ ДАННЫХ

Рассмотрены вопросы обработки многомерных статистических данных рейтинговой оценки студентов на основе применения метода главных компонент.

Ключевые слова: многомерный анализ данных, снижение размерности, метод главных компонент, рейтинг.

На практике часто приходится сталкиваться с ситуацией, когда объект исследования характеризуется множеством разнообразных параметров, каждый из которых измеряется или оценивается. Анализ полученного в результате исследования нескольких однотипных объектов массива исходных данных представляет собой практически нерешаемую задачу. Поэтому исследователю необходимо проанализировать связи и взаимозависимости между исходными параметрами, с тем чтобы отбросить часть из них или заменить их меньшим числом каких-либо функций от них, сохранив при этом по возможности всю заключенную в них информацию.

В связи с этим встают задачиснижения размерности, т. е. перехода от исходного массива данных к существенно меньшему количеству показателей, отобранных из числа исходных или полученных путем некоторого их преобразования (с наименьшей потерей информации, содержащейся в исходном массиве), и классификации – разделения рассматриваемой совокупности объектов на однородные (в некотором смысле) группы. Если по большому числу разнотипных и стохастически взаимосвязанных показателей были получены результаты статистического обследования целой совокупности объектов, то для решения задач классификации и снижения размерности следует использовать инструментарий многомерного статистического анализа, в частности метод главных компонент .


В статье предлагается методика применения метода главных компонент для обработки многомерных статистических данных. В качестве примера приводится решение задачи статистической обработки многомерных результатов рейтинговой оценки студентов.

1. Определение и вычисление главных компонент ..png" height="22 src="> признаков. В результате получаем многомерные наблюдения, каждое из которых можно представить в виде векторного наблюдения

где https://pandia.ru/text/79/206/images/image005.png" height="22 src=">.png" height="22 src=">– символ операции транспонирования.

Полученные многомерные наблюдения необходимо подвергнуть статистической обработке..png" height="22 src=">.png" height="22 src=">.png" width="132" height="25 src=">.png" width="33" height="22 src="> допустимых преобразований исследуемых признаков 0 " style="border-collapse:collapse">

– условие нормировки;

– условие ортогональности

Полученные подобным преобразованием https://pandia.ru/text/79/206/images/image018.png" width="79" height="23 src="> и представляют собой главные компоненты. Из нихпри дальнейшем анализеисключают переменные с минимальной дисперсией , т. е..png" width="131" height="22 src="> в преобразовании (2)..png" width="13" height="22 src="> этой матрицы равны дисперсиям главных компонент .

Таким образом, первой главной компонентой https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">называется такая нормированно-центрированная линейная комбинация этих показателей, которая среди всех прочих подобных комбинаций обладает наибольшей дисперсией..png" width="12" height="22 src=">собственный вектор матрицы https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">.png" width="80" height="23 src="> называется такая нормированно-центрированная линейная комбинация этих показателей, которая не коррелирована с https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">.png" width="80" height="23 src="> измеряются в различных единицах, то результаты исследования с помощью главных компонент будут существенно зависеть от выбора масштаба и природы единиц измерения , а полученные линейные комбинации исходных переменных будет трудно интерпретировать. В связи с этим при различных единицах измерения исходных признаков DIV_ADBLOCK310">


https://pandia.ru/text/79/206/images/image030.png" width="17" height="22 src=">.png" width="56" height="23 src=">. После подобного преобразования проводят анализ главных компонент относительно величин https://pandia.ru/text/79/206/images/image033.png" width="17" height="22 src=">, которая является одновременно корреляционной матрицей https://pandia.ru/text/79/206/images/image035.png" width="162" height="22 src=">.png" width="13" height="22 src="> на i - й исходный признак ..png" width="14" height="22 src=">.png" width="10" height="22 src="> равна дисперсии v - й главной компонентыhttps://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> используются при содержательной интерпретации главных компонент..png" width="20" height="22 src=">.png" width="251" height="25 src=">

Для проведения расчетов векторные наблюдения агрегируем в выборочную матрицу, в которой строки соответствуют контролируемым признакам, а столбцы – объектам исследования (размерность матрицы – https://pandia.ru/text/79/206/images/image043.png" width="348" height="67 src=">

После центрирования исходных данных находим выборочную корреляционную матрицу по формуле

https://pandia.ru/text/79/206/images/image045.png" width="204" height="69 src=">

Диагональные элементы матрицы https://pandia.ru/text/79/206/images/image047.png" width="206" height="68 src=">

Недиагональные элементы этой матрицы представляют собой выборочные оценки коэффициентов корреляции между соответствующей парой признаков.

Составляем характеристическое уравнение для матрицы 0 " style="margin-left:5.4pt;border-collapse:collapse">

Находим все его корни:

Теперь для нахождения компонент главных векторов подставляем последовательно численные значения https://pandia.ru/text/79/206/images/image065.png" width="16" height="22 src=">.png" width="102" height="24 src=">

Например, при https://pandia.ru/text/79/206/images/image069.png" width="262" height="70 src=">

Очевидно, что полученная система уравнений совместна ввиду однородности и неопределенна, т. е. имеет бесконечное множество решений. Для нахождения единственного интересующего нас решения воспользуемся следующими положениями:

1. Для корней системы может быть записано соотношение

https://pandia.ru/text/79/206/images/image071.png" width="20" height="23 src="> – алгебраическое дополнение j -го элемента любой i -й строки матрицы системы.

2. Наличие условия нормировки (2) обеспечивает единственность решения рассматриваемой системы уравнений..png" width="13" height="22 src=">, определяются однозначно, за исключением того, что все они могут одновременно изменить знак. Однако знаки компонентов собственных векторов не играют существенной роли, так как их смена не влияет на результат анализа. Они могут служить только для индикации противоположных тенденций на соответствующей главной компоненте .

Таким образом, получаем собственный вектор https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">:

https://pandia.ru/text/79/206/images/image024.png" width="12" height="22 src="> проверяем по равенству

https://pandia.ru/text/79/206/images/image076.png" width="503" height="22">

… … … … … … … … …

https://pandia.ru/text/79/206/images/image078.png" width="595" height="22 src=">

https://pandia.ru/text/79/206/images/image080.png" width="589" height="22 src=">

где https://pandia.ru/text/79/206/images/image082.png" width="16" height="22 src=">.png" width="23" height="22 src="> – стандартизированные значения соответствующих исходных признаков.

Составляем ортогональную матрицу линейного преобразования https://pandia.ru/text/79/206/images/image086.png" width="94" height="22 src=">

Так как в соответствии со свойствами главных компонент сумма дисперсий исходных признаков равна сумме дисперсий всех главных компонент, то с учетом того, что мы рассматривали нормированные исходные признаки, можно оценить, какую часть общей изменчивости исходных признаков объясняет каждая из главных компонент. Например, для первых двух главных компонент имеем:

Таким образом, в соответствии с критерием информативности, используемым для главных компонент, найденных по корреляционной матрице, семьпервых главных компонент объясняют 88,97% общей изменчивости пятнадцати исходных признаков.

Используя матрицу линейного преобразования https://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> (для семи первых главных компонент):

https://pandia.ru/text/79/206/images/image090.png" width="16" height="22 src="> – число дипломов, полученных в конкурсе научных и дипломных работ ; https://pandia.ru/text/79/206/images/image092.png" width="16" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src="> – награды и призовые места, занятые на региональных, областных и городских спортивных соревнованиях.

3..png" width="16" height="22 src=">(число грамот по результатам участия в конкурсах научных и дипломных работ).

4..png" width="22" height="22 src=">(награды и призовые места, занятые на вузовских соревнованиях).

6. Шестая главная компонента положительно коррелирована с показателем DIV_ADBLOCK311">

4. Третья главная компонента – активность студентов в учебном процессе.

5. Четвертая и шестая компоненты – прилежность студентов в течение весеннего и осеннего семестров соответственно.

6. Пятая главная компонента – степень участия в спортивных соревнованиях университета.

В дальнейшем для проведения всех необходимых расчетов при выделении главных компонент предлагается использовать специализированные статистические программные комплексы, например STATISTICA, что существенно облегчит процесс анализа.

Описанный в данной статье процесс выделения главных компонент на примере рейтинговой оценки студентов предлагается использовать для аттестации бакалавров и магистров.

СПИСОК ЛИТЕРАТУРЫ

1. Прикладная статистика: Классификация и снижение размерности: справ. изд. / , ; под ред. . – М.: Финансы и статистика, 1989. – 607 с.

2. Справочник по прикладной статистике:в 2 т.: [пер. с англ.] / под ред. Э. Ллойда, У. Ледермана, . – М.:Финансы и статистика, 1990. – Т. 2. – 526 c.

3. Прикладная статистика. Основы эконометрики . В 2 т. Т.1. Теория вероятностей и прикладная статистика: учеб. для вузов / , B. C. Мхитарян. – 2-е изд., испр.– М: ЮНИТИ-ДАНА, 2001. – 656 с.

4. Афифи, А. Статистический анализ: подход с использованием ЭВМ: [пер. с англ.] / А. Афифи, С. Эйзен.– М.: Мир, 1982. – 488 с.

5. Дронов, статистический анализ: учеб. пособие / . – Барна3. – 213 с.

6. Андерсон, Т. Введение в многомерный статистический анализ / Т. Андерсон; пер. с англ. [и др.]; под ред. . – М.: Гос. изд-во физ.-мат. лит., 1963. – 500 с.

7. Лоули, Д. Факторный анализ как статистический метод / Д. Лоули, А. Максвелл; пер. с англ. . – М.: Мир, 1967. – 144 с.

8. Дубров, статистические методы: учебник / , . – М.: Финансы и статистика, 2003. – 352 с.

9. Кендалл, М. Многомерный статистический анализ и временные ряды / М. Кендалл, А. Стьюарт;пер. с англ. , ; под ред. , . – М.: Наука,1976. – 736 с.

10. Белоглазов, анализ в задачах квалиметрии образования / // Изв. РАН. Теория и системы управления. – 2006. – №6. – С. 39 – 52.

Материал поступил в редколлегию 8.11.11.

Работа выполнена в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 гг. (государственный контракт № П770).

В стремлении предельно точно описать исследуемую область аналитики часто отбирают большое число независимых переменных (p). В этом случае может возникнуть серьезная ошибка: несколько описывающих переменных могут характеризовать одну и ту же сторону зависимой переменной и, как следствие, высоко коррелировать между собой. Мультиколлинеарность независимых переменных серьезно искажает результаты исследования, поэтому от нее следует избавляться.

Метод главных компонент (как упрощенная модель факторного анализа, поскольку при этом методе не используются индивидуальные факторы, описывающие только одну переменную x i) позволяет объединить влияние высоко коррелированных переменных в один фактор, характеризующий зависимую переменную с одной единственной стороны. В результате анализа, осуществленного по методу главных компонент, мы добьемся сжатия информации до необходимых размеров, описания зависимой переменной m (m

Для начала необходимо решить, сколько факторов необходимо выделить в данном исследовании. В рамках метода главных компонент первый главный фактор описывает наибольших процент дисперсии независимых переменных, далее – по убывающей. Таким образом, каждая следующая главная компонента, выделенная последовательно, объясняет все меньшую долю изменчивости факторов x i . Задача исследователя состоит в том, чтобы определить, когда изменчивость становится действительно малой и случайной. Другими словами – сколько главных компонент необходимо выбрать для дальнейшего анализа.

Существует несколько методов рационального выделения необходимого числа факторов. Наиболее используемый из них – критерий Кайзера. Согласно этому критерию, отбираются только те факторы, собственные значения которых больше 1. Таким образом, фактор, который не объясняет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, опускается.



Проанализируем Таблицу 19, построенную в SPSS:

Таблица 19. Полная объясненная дисперсия

Компонента Начальные собственные значения Суммы квадратов нагрузок вращения
Итого % Дисперсии Кумулятивный % Итого % Дисперсии Кумулятивный %
dimension0 5,442 90,700 90,700 3,315 55,246 55,246
,457 7,616 98,316 2,304 38,396 93,641
,082 1,372 99,688 ,360 6,005 99,646
,009 ,153 99,841 ,011 ,176 99,823
,007 ,115 99,956 ,006 ,107 99,930
,003 ,044 100,000 ,004 ,070 100,000
Метод выделения: Анализ главных компонент.

Как видно из Таблицы 19, в данном исследовании переменные x i высоко коррелирут между собой (это также выявлено ранее и видно из Таблицы 5 «Парные коэффициенты корреляции»), а следовательно, характеризуют зависимую переменную Y практически с одной стороны: изначально первая главная компонента объясняет 90,7 % дисперсии x i , и только собственное значение, соответствующее первой главной компоненте, больше 1. Конечно, это является недостатком отбора данных, однако в процессе самого отбора этот недостаток не был очевиден.

Анализ в пакете SPSS позволяет самостоятельно выбрать число главных компонент. Выберем число 6 – равное количеству независимых переменных. Второй столбец Таблицы 19 показывает суммы квадратов нагрузок вращения, именно по этим результатам и сделаем вывод о числе факторов. Собственные значения, соответствующие первым двум главным компонентам, больше 1 (55,246% и 38,396% соответственно), поэтому, согласно методу Кайзера, выделим 2 наиболее значимые главные компоненты.

Второй метод выделения необходимого числа факторов – критерий «каменистой осыпи». Согласно этому методу, собственные значения представляются в виде простого графика, и выбирается такое место на графике, где убывание собственных значений слева направо максимально замедляется:

Рисунок 3. Критерий "каменистой осыпи"

Как видно на Рисунке 3, убывание собственных значений замедляется уже со второй компоненты, однако постоянная скорость убывания (очень маленькая) начинается лишь с третьей компоненты. Следовательно, для дальнейшего анализа будут отобраны первые две главные компоненты. Это умозаключение согласуется с выводом, полученным при использовании метода Кайзера. Таким образом, окончательно выбираются первые две последовательно полученные главные компоненты.

После выделения главных компонент, которые будут использоваться в дальнейшем анализе, необходимо определить корреляцию исходных переменных x i c полученными факторами и, исходя из этого, дать названия компонентам. Для анализа воспользуемся матрицей факторных нагрузок А, элементы которой являются коэффициентами корреляции факторов с исходными независимыми переменными:

Таблица 20. Матрица факторных нагрузок

Матрица компонент a
Компонента
X1 ,956 -,273 ,084 ,037 -,049 ,015
X2 ,986 -,138 ,035 -,080 ,006 ,013
X3 ,963 -,260 ,034 ,031 ,060 -,010
X4 ,977 ,203 ,052 -,009 -,023 -,040
X5 ,966 ,016 -,258 ,008 -,008 ,002
X6 ,861 ,504 ,060 ,018 ,016 ,023
Метод выделения: Анализ методом главных компонент.
a. Извлеченных компонент: 6

В данном случае интерпретация коэффициентов корреляции затруднена, следовательно, довольно сложно дать названия первым двум главным компонентам. Поэтому далее воспользуемся методом ортогонального поворота системы координат Варимакс, целью которого является поворот факторов так, чтобы выбрать простейшую для интерпретации факторную структуру:

Таблица 21. Коэффициенты интерпретации

Матрица повернутых компонент a
Компонента
X1 ,911 ,384 ,137 -,021 ,055 ,015
X2 ,841 ,498 ,190 ,097 ,000 ,007
X3 ,900 ,390 ,183 -,016 -,058 -,002
X4 ,622 ,761 ,174 ,022 ,009 ,060
X5 ,678 ,564 ,472 ,007 ,001 ,005
X6 ,348 ,927 ,139 ,001 -,004 -,016
Метод выделения: Анализ методом главных компонент. Метод вращения: Варимакс с нормализацией Кайзера.
a. Вращение сошлось за 4 итераций.

Из Таблицы 21 видно, что первая главная компонента больше всего связана с переменными x1, x2, x3; а вторая – с переменными x4, x5, x6. Таким образом, можно сделать вывод, что объем инвестиций в основные средства в регионе (переменная Y) зависит от двух факторов:

- объема собственных и заемных средств, поступивших в предприятия региона за период (первая компонента, z1);

- а также от интенсивности вложений предприятий региона в финансовые активы и количества иностранного капитала в регионе (вторая компонента, z2).

Рисунок 4. Диаграмма рассеивания

Данная диаграмма демонстрирует неутешительные результаты. Еще в самом начале исследования мы старались подобрать данные так, чтобы результирующая переменная Y была распределена нормально, и нам практически это удалось. Законы распределения независимых переменных были достаточно далеки от нормального, однако мы старались максимально приблизить их к нормальному закону (соответствующим образом подобрать данные). Рисунок 4 показывает, что первоначальная гипотеза о близости закона распределения независимых переменных к нормальному закону не подтверждается: форма облака должна напоминать эллипс, в центре объекты должны быть расположены более густо, нежели чем по краям. Стоит заметить, что сделать многомерную выборку, в которой все переменные распределены по нормальному закону – задача, выполнимая с огромным трудом (более того, не всегда имеющая решение). Однако к этой цели нужно стремиться: тогда результаты анализа будут более значимыми и понятными при интерпретации. К сожалению, в нашем случае, когда проделана большая часть работы по анализу собранных данных, менять выборку достаточно затруднительно. Но далее, в последующих работах, стоит более серьезно подходить в выборке независимых переменных и максимально приближать закон их распределения к нормальному.

Последним этапом анализа методом главных компонент является построение уравнения регрессии на главные компоненты (в данном случае – на первую и вторую главные компоненты).

При помощи SPSS рассчитаем параметры регрессионной модели:

Таблица 22. Параметры уравнения регресии на главные компоненты

Модель Нестандартизованные коэффициенты Стандартизованные коэффициенты t Знч.
B Стд. Ошибка Бета
(Константа) 47414,184 1354,505 35,005 ,001
Z1 26940,937 1366,763 ,916 19,711 ,001
Z2 6267,159 1366,763 ,213 4,585 ,001

Уравнение регрессии примет вид:

y=47 414,184 + 0,916*z1+0,213*z2,

(b0) (b1) (b2)

т. о. b0 =47 414,184 показывает точку пересечения прямой регрессии с осью результирующего показателя;

b1= 0,916 – при увеличении значения фактора z1 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,916;

b2= 0,213 – при увеличении значения фактора z2 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,213.

В данном случае значение tкр («альфа»=0,001, «ню»=53) = 3,46 меньше tнабл для всех коэффициентов «бета». Следовательно, все коэффициенты значимы.

Таблица 24. Качество регрессионной модели на главные компоненты

Модель R R-квадрат Скорректированный R-квадрат Стд. ошибка оценки
dimension0 ,941 a ,885 ,881 10136,18468
a. Предикторы: (конст) Z1, Z2
b. Зависимая переменная: Y

В Таблице 24 отражены показатели, которые характеризуют качество построенной модели, а именно: R – множественный к-т корреляции – говорит о том, какая доля дисперсии Y объясняется вариацией Z; R^2 – к-т детерминации – показывает долю объяснённой дисперсии отклонений Y от её среднего значения. Стандартная ошибка оценки характеризует ошибку построенной модели. Сравним эти показатели с аналогичными показателями степенной регрессионной модели (ее качество оказалось выше качества линейной модели, поэтому сравниваем именно со степенной):

Таблица 25. Качество степенной регрессионной модели

Так, множественный к-т корреляции R и к-т детерминации R^2 в степенной модели несколько выше, чем в модели главных компонент. Кроме того, стандартная ошибка модели главных компонент НАМНОГО выше, чем в степенной модели. Поэтому качество степенной регрессионной модели выше, чем регрессионной модели, построенной на главных компонентах.

Проведем верификацию регрессионной модели главных компонент, т. е. проанализируем ее значимость. Проверим гипотезу о незначимости модели, рассчитаем F(набл.) = 204,784 (рассчитано в SPSS), F(крит) (0,001; 2; 53)=7,76. F(набл)>F(крит), следовательно, гипотеза о незначимости модели отвергается. Модель значима.

Итак, в результате проведения компонентного анализа, было выяснено, что из отобранных независимых переменных x i можно выделить 2 главные компоненты – z1 и z2, причем на z1 в большей степени влияют переменные x1, x2, x3, а на z2 – x4, x5, x6. Уравнение регрессии, построенное на главных компонентах, оказалось значимым, хотя и уступает по качеству степенному уравнению регрессии. Согласно уравнению регрессии на главные компоненты, Y положительно зависит как от Z1, так и от Z2. Однако изначальная мультиколлинеарность переменных xi и то, что они не распределены по нормальному закону распределения, может искажать результаты построенной модели и делать ее менее значимой.

Кластерный анализ

Следующим этапом данного исследования является кластерный анализ. Задачей кластерного анализа является разбиение выбранных регионов (n=56) на сравнительно небольшое число групп (кластеров) на основе их естественной близости относительно значений переменных x i . При проведении кластерного анализа мы предполагаем, что геометрическая близость двух или нескольких точек в пространстве означает физическую близость соответствующих объектов, их однородность (в нашем случае - однородность регионов по показателям, влияющим на инвестиции в основные средства).

На первой стадии кластерного анализа необходимо определиться с оптимальным числом выделяемых кластеров. Для этого необходимо провести иерархическую кластеризацию – последовательное объединение объектов в кластеры до тех пор, пока не останется два больших кластера, объединяющиеся в один на максимальном расстоянии друг от друга. Результат иерархического анализа (вывод об оптимальном количестве кластеров) зависит от способа расчета расстояния между кластерами. Таким образом, протестируем различные методы и сделаем соответствующие выводы.

Метод «ближнего соседа»

Если расстояние между отдельными объектами мы рассчитываем единым способом – как простое евклидово расстояние – расстояние между кластерами вычисляется разными методами. Согласно методу «ближайшего соседа», расстояние между кластерами соответствует минимальному расстоянию между двумя объектами разных кластеров.

Анализ в пакете SPSS проходит следующим образом. Сначала рассчитывается матрица расстояний между всеми объектами, а затем, на основе матрицы расстояний, объекты последовательно объединяются в кластеры (для каждого шага матрица составляется заново). Шаги последовательного объединения представлены в таблице:

Таблица 26. Шаги агломерации. Метод «ближайшего соседа»

Этап Кластер объединен с Коэффициенты Следующий этап
Кластер 1 Кластер 2 Кластер 1 Кластер 2
,003
,004
,004
,005
,005
,005
,005
,006
,007
,007
,009
,010
,010
,010
,010
,011
,012
,012
,012
,012
,012
,013
,014
,014
,014
,014
,015
,015
,016
,017
,018
,018
,019
,019
,020
,021
,021
,022
,024
,025
,027
,030
,033
,034
,042
,052
,074
,101
,103
,126
,163
,198
,208
,583
1,072

Как видно из Таблицы 26, на первом этапе объединились элементы 7 и 8, т. к. расстояние между ними было минимальным – 0,003. Далее расстояние между объединенными объектами увеличивается. По таблице также можно сделать вывод об оптимальном числе кластеров. Для этого нужно посмотреть, после какого шага происходит резкий скачок в величине расстояния, и вычесть номер этой агломерации из числа исследуемых объектов. В нашем случае: (56-53)=3 – оптимальное число кластеров.

Рисунок 5. Дендрограмма. Метод "ближайшего соседа"

Аналогичный вывод об оптимальном количестве кластеров можно сделать и глядя на дендрограмму (Рис. 5): следует выделить 3 кластера, причем в первый кластер войдут объекты под номерами 1-54 (всего 54 объекта), а во второй и третий кластеры – по одному объекту (под номерами 55 и 56 соответственно). Данный результат говорит о том, что первые 54 региона относительно однородны по показателям, влияющим на инвестиции в основные средства, в то время как объекты под номерами 55 (Республика Дагестан) и 56 (Новосибирская область) значительно выделяются на общем фоне. Стоит заметить, что данные субъекты имеют самые большие объемы инвестиций в основные средства среди всех отобранных регионов. Этот факт еще раз доказывает высокую зависимость результирующей переменной (объема инвестиций) от выбранных независимых переменных.

Аналогичные рассуждения проводятся для других методов расчета расстояния между кластерами.

Метод «дальнего соседа»

Таблица 27. Шаги агломерации. Метод "дальнего соседа"

Этап Кластер объединен с Коэффициенты Этап первого появления кластера Следующий этап
Кластер 1 Кластер 2 Кластер 1 Кластер 2
,003
,004
,004
,005
,005
,005
,005
,007
,009
,010
,010
,011
,011
,012
,012
,014
,014
,014
,017
,017
,018
,018
,019
,021
,022
,026
,026
,027
,034
,035
,035
,037
,037
,042
,044
,046
,063
,077
,082
,101
,105
,117
,126
,134
,142
,187
,265
,269
,275
,439
,504
,794
,902
1,673
2,449

При методе «дальнего соседа» расстояние между кластерами рассчитывается как максимальное расстояние между двумя объектами в двух разных кластерах. Согласно Таблице 27, оптимальное число кластеров равно (56-53)=3.

Рисунок 6. Дендрограмма. Метод "дальнего соседа"

Согласно дендрограмме, оптимальным решением также будет выделение 3 кластеров: в первый кластер войдут регионы под номерами 1-50 (50 регионов), во второй – под номерами 51-55 (5 регионов), в третий – последний регион под номером 56.

Метод «центра тяжести»

При методе «центра тяжести» за расстояние между кластерами принимается евклидово расстояние между «центрами тяжести» кластеров – средними арифметическими их показателей x i .

Рисунок 7. Дендрограмма. Метод "центра тяжести"

На Рисунке 7 видно, что оптимальное число кластеров следующее: 1 кластер – 1-47 объекты; 2 кластер – 48-54 объекты (всего 6); 3 кластер – 55 объект; 4 кластер – 56 объект.

Принцип «средней связи»

В данном случае расстояние между кластерами равно среднему значению расстояний между всеми возможными парами наблюдений, причем одно наблюдение берется из одного кластера, а второе – соответственно, из другого.

Анализ таблицы шагов агломерации показал, что оптимальное количество кластеров равно (56-52)=4. Сравним этот вывод с выводом, полученным при анализе дендрограммы. На Рисунке 8 видно, что в 1 кластер войдут объекты под номерами 1-50, во 2 кластер – объекты 51-54 (4 объекта), в 3 кластер – 55 регион, в 4 кластер – 56 регион.

Рисунок 8. Дендрограмма. Метод "средней связи"

Компонентный анализ относится к многомерным методам снижения размерности. Он содержит один метод - метод главных компонент. Главные компоненты представляют собой ортогональную систему координат, в которой дисперсии компонент характеризуют их статистические свойства.

Учитывая, что объекты исследования в экономике характеризуются большим, но конечным количеством признаков, влияние которых подвергается воздействию большого количества случайных причин.

Вычисление главных компонент

Первой главной компонентой Z1 исследуемой системы признаков Х1, Х2, Х3 , Х4 ,…, Хn называется такая центрировано - нормированная линейная комбинация этих признаков, которая среди прочих центрировано - нормированных линейных комбинаций этих признаков, имеет дисперсию наиболее изменчивую.

В качестве второй главной компоненты Z2 мы будем брать такую центрировано - нормированную комбинацию этих признаков, которая:

не коррелированна с первой главной компонентой,

не коррелированны с первой главной компонентой, эта комбинация имеет наибольшую дисперсию.

K-ой главной компонентой Zk (k=1…m) мы будем называть такую центрировано - нормированную комбинацию признаков, которая:

не коррелированна с к-1 предыдущими главными компонентами,

среди всех возможных комбинаций исходных признаков, которые не

не коррелированны с к-1 предыдущими главными компонентами, эта комбинация имеет наибольшую дисперсию.

Введём ортогональную матрицу U и перейдём от переменных Х к переменным Z, причём

Вектор выбирается т. о., чтобы дисперсия была максимальной. После получения выбирается т. о., чтобы дисперсия была максимальной при условии, что не коррелированно с и т. д.

Так как признаки измерены в несопоставимых величинах, то удобнее будет перейти к центрированно-нормированным величинам. Матрицу исходных центрированно-нормированных значений признаков найдем из соотношения:

где - несмещенная, состоятельная и эффективная оценка математического ожидания,

Несмещенная, состоятельная и эффективная оценка дисперсии.

Матрица наблюденных значений исходных признаков приведена в Приложении.

Центрирование и нормирование произведено с помощью программы"Stadia".

Так как признаки центрированы и нормированы, то оценку корреляционной матрицы можно произвести по формуле:


Перед тем как проводить компонентный анализ, проведем анализ независимости исходных признаков.

Проверка значимости матрицы парных корреляций с помощью критерия Уилкса.

Выдвигаем гипотезу:

Н0: незначима

Н1: значима

125,7; (0,05;3,3) = 7,8

т.к > , то гипотеза Н0 отвергается и матрица является значимой, следовательно, имеет смысл проводить компонентный анализ.

Проверим гипотезу о диагональности ковариационной матрицы

Выдвигаем гипотезу:

Строим статистику, распределена по закону с степенями свободы.

123,21, (0,05;10) =18,307

т.к >, то гипотеза Н0 отвергается и имеет смысл проводить компонентный анализ.

Для построения матрицы факторных нагрузок необходимо найти собственные числа матрицы, решив уравнение.

Используем для этой операции функцию eigenvals системы MathCAD, которая возвращает собственные числа матрицы:

Т.к. исходные данные представляют собой выборку из генеральной совокупности, то мы получили не собственные числа и собственные вектора матрицы, а их оценки. Нас будет интересовать на сколько “хорошо” со статистической точки зрения выборочные характеристики описывают соответствующие параметры для генеральной совокупности.

Доверительный интервал для i-го собственного числа ищется по формуле:

Доверительные интервалы для собственных чисел в итоге принимают вид:

Оценка значения нескольких собственных чисел попадает в доверительный интервал других собственных чисел. Необходимо проверить гипотезу о кратности собственных чисел.

Проверка кратности производится с помощью статистики

где r-количество кратных корней.

Данная статистика в случае справедливости распределена по закону с числом степеней свободы. Выдвинем гипотезы:

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Необходимо выделить главные компоненты на уровне информативности 0,85. Мера информативности показывает какую часть или какую долю дисперсии исходных признаков составляют k-первых главных компонент. Мерой информативности будем называть величину:

На заданном уровне информативности выделено три главных компоненты.

Запишем матрицу =

Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений: , где - соответствующее собственное число. После получения решения системы необходимо затем нормировать полученный вектор.

Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.

В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)

Строим матрицу U, столбцами которой являются собственные вектора:

Матрица весовых коэффициентов:

Коэффициенты матрицы А являются коэффициентами корреляции между центрировано - нормированными исходными признаками и ненормированными главными компонентами, и показывают наличие, силу и направление линейной связи между соответствующими исходными признаками и соответствующими главными компонентами.

Понравилась статья? Поделитесь ей
Наверх