Понятие структурных уровней организации жизни. Структурные уровни организации жизни. Уровни организации живой природы

Выделяют следующие уровни организации жизни: молекулярный, клеточный, органно-тканевой (иногда их разделяют), организменный, популяционно-видовой, биогеоценотический, биосферный. Живая природа представляет собой систему, а различные уровни ее организации формируют ее сложное иерархическое строение, когда нижележащие более простые уровни определяют свойства вышележащих.

Так сложные органические молекулы входят в состав клеток и определяют их строение и жизнедеятельность. У многоклеточных организмов клетки организованы в ткани, несколько тканей образуют орган. Многоклеточный организм состоит из систем органов, с другой стороны, организм сам является элементарной единицей популяции и биологического вида. Сообщество представляется собой взаимодействующие популяции разных видов. Сообщество и окружающая среда формируют биогеоценоз (экосистему). Совокупность экосистем планеты Земля образует ее биосферу.

На каждом уровне возникают новые свойства живого, отсутствующие на нижележащем уровне, выделяются свои элементарные явления и элементарные единицы. При этом во многом уровни отражают ход эволюционного процесса.

Выделение уровней удобно для изучения жизни как сложного природного явления.

Рассмотрим подробнее каждый уровень организации жизни.

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул. Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот). Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов. Иногда молекулярный уровень называют молекулярно-генетическим.

Клеточный уровень жизни

Именно клетка является структурной и функциональной единицей живого. Вне клетки жизни нет. Даже вирусы могут проявлять свойства живого, лишь оказавшись в клетке хозяина. Биополимеры в полной мере проявляют свою реакционную способность будучи организованы в клетку, которую можно рассматривать как сложную систему взаимосвязанных в первую очередь различными химическими реакциями молекул.

На этом клеточном уровне проявляется феномен жизни, сопрягаются механизмы передачи генетической информации и превращения веществ и энергии.

Органно-тканевой

Ткани есть только у многоклеточных организмов. Ткань представляет собой совокупность сходных по строению и функциям клеток.

Ткани образуются в процессе онтогенеза путем дифференцировки клеток имеющих одну и ту же генетическую информацию. На этом уровне происходит специализация клеток.

У растений и животных выделяют разные типы тканей. Так у растений это меристема, защитная, основная и проводящая ткани. У животных - эпителиальная, соединительная, мышечная и нервная. Ткани могут включать перечень подтканей.

Орган обычно состоит из нескольких тканей, объединенных между собой в структурно-функциональное единство.

Органы формируют системы органов, каждая из которых отвечает за важную для организма функцию.

Органный уровень у одноклеточных организмов представлен различными органеллами клетки, выполняющими функции переваривания, выделения, дыхания и др.

Организменный уровень организации живого

Наряду с клеточным на организменном (или онтогенетическом) уровне выделяются обособленной структурные единицы. Ткани и органы не могут жить независимо, организмы и клетки (если это одноклеточный организм) могут.

Многоклеточные организмы состоят из систем органов.

На организменном уровне проявляются такие явления жизни как размножение, онтогенез, обмен веществ, раздражимость, нервно-гуморальная регуляция, гомеостаз. Другими словами, его элементарные явления составляют закономерные изменения организма в индивидуальном развитии. Элементарной единицей является особь.

Популяционно-видовой

Организмы одного вида, объединенные общим местообитанием, формируют популяцию. Вид обычно состоит из множества популяций.

Популяции имеют общий генофонд. В пределах вида они могут обмениваться генами, т. е. являются генетически открытыми системами.

В популяциях происходят элементарные эволюционные явления, приводящие в конечном итоге к видообразованию. Живая природа может эволюционировать только в надорганизменных уровнях.

На этом уровне возникает потенциальное бессмертие живого.

Биогеоценотический уровень

Биогеоценоз представляет собой взаимодействующую совокупность организмов разных видов с различными факторами среды их обитания. Элементарные явления представлены вещественно-энергетическими круговоротами, обеспечиваемыми в первую очередь живыми организмами.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Биосфера

Биосферный уровень организации жизни - это система высшего порядка жизни на Земле. Биосфера охватывает все проявления жизни на планете. На этом уровне происходит глобальный круговорот веществ и поток энергии (охватывающий все биогеоценозы).

Рассмотрите рисунки 5-9. Из каких частей состоят такие биологические системы, как клетка, орга низм, сообщество организмов? Вспомните, какие химические соединения входят в состав организмов.

Рис. 5. Молекулярно-генетический уровень

Окружающая нас живая природа представляет собой биологические системы разных уровней организации и сложности. По наличию специфических структурно-функциональных единиц жизни и процессов, происходящих с ними, можно выделить шесть основных уровней живой природы: молекулярно-генетический, органоид-но-клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный (рис. 5-10).

Любая биологическая система всегда состоит из молекул нуклеиновых кислот, белков, полисахаридов, липидов, а также других соединений. Структурно-функциональной единицей этого уровня организации жизни является ген - участок молекулы дезоксирибонуклеиновой кислоты (ДНК), несущий наследственную информацию о структуре одного белка.

На молекулярно-генетическом уровне протекают важнейшие процессы жизнедеятельности - кодирование, передача и реализация наследственной информации. На этом же уровне организации жизни осуществляется процесс изменения наследственной информации.

Структурно-функциональной единицей этого уровня организации жизни служит клетка. Из клеток и межклеточного вещества состоят ткани, а ткани образуют органы и системы органов. Отдельная клетка состоит из органоидов - внутриклеточных структур, образованных молекулами органических и неорганических веществ.

Рис. 6. Органоидно-клеточный уровень

На органоидно-клеточном уровне протекают важнейшие процессы жизнедеятельности: обмен веществ и превращение энергии в клетке, ее рост, развитие и деление. Следует подчеркнуть, что клетка, которая может выступать и как целостный организм, т. е. самостоятельная и автономная живая система.

Структурно-функциональная единица этого уровня организации жизни - организм. Он может быть одноклеточным, многоклеточным, или представлять из себя колонию.

На организменном уровне протекают процессы жизнедеятельности, обеспечивающие существование каждой особи как самостоятельной живой системы - питание, дыхание, выделение, размножение, рост, развитие и др. Целостность этой системы, т. е. организма, поддерживается взаимосвязью образующих его частей, выполняющих различные функции.

На этом же уровне организации жизни происходит реализация генетической программы организма и его самовоспроизведение. Взаимодействие со средой приводит к появлению у организмов изменчивости. Размножение организмов, осуществляющееся разными путями, обеспечивает не только самовоспроизведение жизни на этом уровне, но и комбинирует признаки родительских особей, участвовавших в размножении, в соответствии с законами наследственности.

Структурно-функциональной единицей этого уровня организации жизни служит вид организма, представленный в природе живущими на определенной территории особями, связанными родственными связями - популяциями. В популяциях на основе наследственной изменчивости выживают наиболее приспособленные особи, обладающие полезными при определенных условиях признаками. От этих особей постепенно в ходе исторического развития органического мира образуются новые виды организмов, т. е. происходит видообразование.

Рис. 7. Организменный уровень

Популяции разных видов растений, животных, грибов и микроорганизмов вместе с условиями неживой среды, например светом, влагой, воздухом, образуют биогеоценоз. В нем между живыми организмами и неживой природой устанавливаются различные взаимосвязи. В результате изменений, вызванных деятельностью живых организмов или влиянием неживой природы, постепенно одни биогеоценозы превращаются в другие, т. е. происходят их развитие и смена.

Рис. 8. Популяционно-видовой уровень

Все биогеоценозы нашей планеты образуют - биосферу, т. е. оболочку Земли, населенную и активно преобразуемую организмами. В ней происходят глобальные биогеохимические циклы (круговороты веществ и потоки энергии), а также изменения, связанные с эволюцией живой природы и вызванные деятельностью человека.

Рис. 9. Биогеоценотический уровень

Таким образом, жизнь на нашей планете представляет собой открытые для веществ, энергии и информации саморегулирующиеся и самовоспроизводящиеся системы различного ранга (ген, клетка, организм, вид, популяция, биогеоценоз, биосфера), объединенные происходящими в них процессами жизнедеятельности и развития.

Рис. 10. Биосферный уровень

Упражнения по пройденному материалу

  1. На основании чего в современной науке сложилось представление об уровнях организации жизни?
  2. Что является структурно-функциональной единицей каждого уровня организации жизни?
  3. Какие про цессы жизнедеятельности происходят на каждом уровне организации жизни?

И кле-точного уровней жизни , существует самый элементарный, «первый», глубинный уровень организации живой материи — молекулярный . Этот уровень органи-зации жизни находится на границе между живой и неживой (косной) матери-ей. Он является первоосновой жизни на нашей планете.

Молекулярный уровень можно рассматривать как первичную основу жизни.

Действительно, какую бы сторону биологической организации мы ни рассматривали, неизбежно приходим к макромолекулам органических соеди-нений, их реакциям и физико-химическим процессам. Только через выясне-ние молекулярных механизмов процессов жизнедеятельности клетки можно подойти к пониманию сущностных основ жизни и организмов , и клеток, и других биосистем.

Однако следует подчеркнуть, что знание макромолекул, умение изучать их в пробирке, выполнение учёными синтеза белков в лаборатории ещё не да-ют понимания свойств жизни, поскольку жизнь начинается только тогда, когда эти реакции и многочисленные молекулы как структурные единицы цело-стной системы находятся в клетке и взаимодействуют между собой как единая система. Вне клетки процессов жизни нет. Выделенные из клетки макромо-лекулы теряют свою биологическую сущность и характеризуются лишь физи-ческими и химическими свойствами, но не являются живыми.

Молекулярный уровень живой материи представлен многочисленным рядом биологических молекул — ДНК и РНК , белков , углеводов , липидов и дру-гих сложных соединений.

Все эти соединения — крупные молекулы органических веществ — поли-меры, синтезированные из мономеров , соединённых в определённом порядке. Сами мономеры различны, но в одной и той же макромолекуле находят-ся их группировки, соединённые друг с другом с помощью химических свя-зей. Все макромолекулы имеют один план строения в клетках у всех организ-мов независимо от их видовой принадлежности. Это объясняется тем, что во всех макромолекулах органических соединений одним из основных элемен-тов выступает углерод. Только благодаря уникальным физико-химическим свойствам углерода образуются крупные, сложные и разнообразные молеку-лы разных органических соединений. Атом углерода, имея четыре валентные связи, способен в определённом порядке объединять большое число атомов в длинные цепи и замкнутые кольцевые структуры. Углеродные цепи и коль-ца являются «скелетами» сложных органических молекул. В этих физико-хи-мических свойствах макромолекул проявляется их универсальность. Материал с сайта

Уникальность макромолекул — в специфике их биологических функ-ций. Например, молекулы нуклеиновых кислот заключают в себе генетиче-ский код синтеза белков и участвуют в передаче генетической информации от клетки к клетке и от организма к организму. Молекулы липидов являются основными элементами, участвующими в строительстве биологических мем-бран и всех других внутриклеточных образований. Молекулы белков служат катализаторами и регуляторами всевозможных химических реакций в клет-ке. Молекулы углеводов, будучи первоосновой построения биологических молекул всех органических соединений, участвуют в накоплении солнечной энергии в виде энергии химических связей. Функциональное своеобразие биологических молекул в клетке тесно связано с их физико-химическими свойствами.

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

Живые организмы являются открытыми высокоупорядоченными системами. Упорядоченность и иерархическая подчиненность поддерживаются за счет контролируемого обмена веществами и энергией с внешней средой - одного из основных свойств живого.

Обмен веществ (метаболизм) для удобства изучения делят на два противоположных и взаимосвязанных процесса, которые происходят одновременно:

I. Анаболизм (ассимиляция) включает процессы биосинтеза сложных органических веществ из более простых. При этом организм расходует энергию либо световую, либо химическую. Другие виды энергии живые организмы расходовать не могут .

Сложные органические вещества в свою очередь могут синтезироваться из неорганических соединений углерода (углекислый газ) или других, более простых органических соединений.

Исходя из этого, принята классификация живых организмов в соответствии с источником углерода и энергии :

Источник энергии

Источник углерода

Автотрофы (СО 2)

Гетеротрофы (орг. в-ва)

Фототрофы (энергия света)

Фотоавтотрофы:

зеленые растения (H 2 O)

цианобактерии (H 2 O)

зеленые и пурпурные серобактерии (H 2 S)

Фотогетеротрофы:

пурпурные несерные бактерии

Хемотрофы (энергия химических реакций)

Хемоавтотрофы:

азотфиксирующие бактерии

Хемогетеротрофы:

Подавляющее большинство видов относится к фотоавтотрофам и хемогетеротрофам. При этом по биомассе автотрофы преобладают, т.к. дают химическую энергию для существования гетеротрофов. Но разнообразие видов значительно больше у гетеротрофов.

Важнейшим процессом анаболизма является фотосинтез у растений и цианобактерий, в результате синтезируется крахмал из углекислого газа и воды. Фотосинтез является основным источником нарастания биомассы на Земле. Практически у всех организмов происходит биосинтез белка, нуклеиновых кислот (в т.ч. репликация ДНК), углеводов и липидов из других органических веществ, а также витаминов, восков, терпенов и др. соединений.

II. Катаболизм (диссимиляция) включает процессы распада сложных органических веществ до более или менее простых с целью получения в первую очередь энергии (в виде носителей - АТФ, ГТФ, КФ). При этом образовавшиеся вещества могут в дальнейшем использоваться или выделяться из организма.

Окисление субстрата, приводящее к получению химической энергии в виде АТФ, называется клеточным дыханием . Его следует отличать от внешнего дыхания , т.е. газообмена между организмом и внешней средой.

Универсальным источником энергии для человека и большинства живых организмов является глюкоза. Фруктоза также может подвергаться окислению.

Глюкоза расщепляется до конечных продуктов - углекислого газа и воды - в присутствии кислорода. У организмов-аэробов, т.е. тех, которые имеют ферменты для кислородного расщепления, это происходит в интенсивно работающих тканях, например, в сердечной мышце. Другие ткани довольствуются энергией бескислородного расщепления - гликолиза. Глюкоза при этом расщепляется до ПВК и быстро получается небольшое количество энергии (2 молекулы АТФ на 1 молекулу глюкозы). При функциональной нагрузке эти ткани переходят на кислородные процессы.

Следует отметить, что в результате катаболизма образуется не только химическая , но тепловая и электрическая энергия, иногда световая и механическая.

Важным источником энергии, кроме углеводов, являются жиры, белки для получения энергии разрушаются только в случае голодания организма.

ХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА. СТРОЕНИЕ НУКЛЕИРНОВЫХ КИСЛОТ. ПОТОКИ ВЕЩЕСТВА И ИНФОРМАЦИИ В ЖИВЫХ ОРГАНИЗМАХ

ДНК и РНК - нуклеиновые кислоты, они определяют синтез белков и передачу наследственной информации. Молекула ДНК состоит из двух спирально закрученных цепей. Диаметр двойной спирали 2 нм (1 нм = 10 - 9 м), длина - несколько десятков или сотен микрометров (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которого являются нуклеотиды. Нуклеотиды ДНК - соединения, состоящие из остатков молекул фосфорной кислоты, углевода дезоксирибозы и азотистого основания. У ДНК четыре типа азотистых оснований: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Каждая цепь ДНК - полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но меньших размеров. Мономеры РНК - нуклеотиды, состоящие из фосфорной кислоты, углевода рибозы и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а вместо тимина в РНК присутствует урацил. Известны 3 вида РНК: информационная (иРНК) - передает информацию о структуре белка с молекулы ДНК; транспортная (тРНК) - транспортирует аминокислоты к рибосомам; рибосомальная (рРНК) - содержится в рибосомах, участвует в поддержании структуры рибосомы.

Поток информации в живых организмах:

̾® ДНК ¾® Репликация (потомки)

| ¾® ¯ (транскрипция (ядро))

| ¯ (трансляция (рибосомы))

| ¬¾ полипептид

ͬ¾ признак

Таким образом, информация о всех признаках организма хранится в ДНК, она передается потомкам и реализуется непосредственно данным организмом. Но на процесс реализации могут влиять образовавшиеся полипептиды и сформировавшиеся признаки. Это называется механизмом обратной связи.

Репликация ДНК - это процесс, в результате которого из одной молекулы образуются две дочерние, полностью идентичные материнской, что обеспечивает передачу наследственной информации от поколения к поколению. Репликация осуществляется в соответствии со следующими принципами:

  1. Комплементарности ;
  2. Полуконсервативности , т.е. каждая дочерняя спираль включает в себя одну синтезированную и одну материнскую полинуклеотидные цепи;
  3. Антипараллельности . ДНК-полимераза движется от 3¢ к 5¢-концу, т.о. дочерняя нить подстраивается антипараллельно, т.е. от 5¢ к 3¢-концу.
  4. Прерывистости . Синтез дочерних нитей ДНК начинается сразу в нескольких местах. Вся молекула не раскручивается, т.к. она очень велика. Участок между двумя точками, где начинается синтез дочерних цепей, называется репликоном. В каждом репликоне есть так называемая вилка репликации , т.е. та часть молекулы, которая под действием специальных ферментов уже расплелась и служит матрицей для синтеза.

В процессе репликации принимает участие много белков-ферментов. ДНК-геликаза расплетает двойную спираль ДНК, разделяя ее полинуклеотидные цепи. ДНК-топоизомераза разрывает связь между остатками фосфорной кислоты и дезоксирибозы в одной из полинуклеотидных цепей ДНК, что дает ей возможность вращаться вокруг второй и снимать напряжение, вызываемое расплетением спирали и расхождением цепей в репликационной вилке. РНК-праймаза синтезирует РНК-затравки. ДНК-полимераза осуществляет непрерывный синтез лидирующей цепи и синтез фрагментов Оказаки отстающей цепи. ДНК-лигаза сшивает фрагменты после удаления РНК-затравки.

РЕПАРАЦИЯ ДНК

Данный механизм отличается очень высокой точностью воспроизведения структуры ДНК.

1. Главная роль в нем принадлежит ферменту ДНК-полимеразе, которая может допустить ошибку только в среднем 1 раз на 10 6 комплементарных пар оснований. Тогда вступает в действие механизм самокоррекции - отщепление ошибочного нуклеотида самой ДНК-полимеразой и замена его необходимым.

2. Ошибки, оставшиеся после самокоррекции между циклами репликации, обнаруживаются специфическими ферментами. Искажение структуры обнаруживается специфическими ферментами. Затем данный участок удаляется и замещается новым, синтезированным на второй цепи ДНК. Такую репарацию называют эксцизионной (т.е. с «вырезанием») или дорепликативной .

3. Иногда дорепликативная репарация не может устранить все изменения, и они входят в обе дочерние молекулы. Эти изменения устраняются в ходе пострепликативной репарации. Она состоит в рекомбинации (обмене фрагментами) между двумя вновь образованными двойными спиралями ДНК. Примером такой репликации может служить удаление возникших тиминовых димеров.

4. SOS-репарация осуществляется при очень большом количестве ошибок специальными ферментами, активируемыми электромагнитным излучением (светом). При этом изменения структуры ДНК (мутации) закрепляются в генотипе. Данный вид репарации имеет важное значение в тех случаях, когда необходимо быстро восстановить функциональную активность ДНК.

СИНТЕЗ БЕЛКА

Биосинтез белков идет в каждой живой клетке. Наследственная информация хранится в молекулах ДНК, а передается в цитоплазму информационной РНК (иРНК), которая комплементарна одной нити молекулы ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном.

Свойства кода ДНК:

  1. триплетность .
  2. вырожденность.
  3. однозначность и наличие знаков препинания .
  4. неперекрываемость.
  5. непрерывность .
  6. универсальность .

Транскрипцией называется перенос информации с ДНК на РНК. Причем матрицей для синтеза РНК служит только одна из двух цепей молекулы ДНК, называемая кодогенной цепью. Данный процесс происходит в ядре по принципу комплементарности. В транскрипции различают 4 стадии:

1. Связывание РНК-полимеразы (фермента, осуществляющего синтез РНК) с промотором .

2. Инициация - начало синтеза иРНК. В реакции участвуют нуклеотидтрифосфаты. Инициация - образование первой связи между двумя нуклеотидами (первый обычно АТФ или ГТФ).

3. Элонгация - рост цепи РНК. Для этого процесса необходимы ионы магния. В процессе элонгации образуется молекула РНК, состоящая из нуклеотидмонофосфатов, и освобождается пирофосфат (Н 4 Р 2 О 7).

4. Терминация - завершение синтеза РНК в участках-терминаторах.

Пройдя через поры ядерной оболочки, иРНК направляется к рибосомам, где осуществляется расшифровка генетической информации.

Трансляцией называется процесс синтеза белка на рибосомах, направляемый матрицей иРНК. Стадии:

1. Стадия активации аминокислот . Каждая аминокислота взаимодействует с молекулой АТФ под действием особого фермента, специфичного для каждой аминокислоты. Все эти ферменты носят общее название кодазы .

2. Присоединение фосфорилированных аминокислот к тРНК с образованием комплекса. Фермент при этом освобождается.

3. Собственно трансляция , или полимеризация, аминокислотных остатков с образованием пептидных связей.

4. Конформационная стадия (белок приобретает необходимую форму).

Две первые стадии идут в цитоплазме. Третья стадия - в рибосомах.

ПОСТТРАНСКРИПЦИОННЫЕ И ПОСТТРАНСЛЯЦИОННЫЕ ПРОЦЕССЫ

Внутри самого структурного гена также различают участки смысловые (экзоны ) и несмысловые, «молчащие» (интроны ), т.е. ген имеет прерывистую, мозаичную структуру. На матрице структурного гена синтезируется так называемая про-иРНК, копия всего гена. Затем про-иРНК подвергается созреванию, или процессингу , в ходе которого там же в ядре все несмысловые участки вырезаются, а концы кодирующих последовательностей соединяются. Этот процесс называется сплайсингом . Все интроны вырезаются не всегда. При изменении условий часть из них может остаться в зрелой иРНК подобно экзонам. Иногда же вырезаются какие-либо экзоны. Таким образом, один ген способен кодировать структуру нескольких белков.

По окончании трансляции первая аминокислота в белковой цепи вырезается. Полученный полипептид имеет только первичную структуру, чтобы он приобрел функциональную активность, по выходу из рибосомы синтезируется вторичная, третичная, а у некоторых белков - четвертичная структура.

РЕГУЛЯЦИЯ БИОСИНТЕЗА БЕЛКА

Регуляцию процессов биосинтеза белков описали в 1961 г. описали французские ученые Франсуа Жакоб, Андре-Мишель Львов, Жан Люсьен Моно у бактерий. За эту работу они получили нобелевскую премию. У прокариот можно выделить структуру, называемую опероном . Это участок ДНК, состоящий из следующих частей:

  1. Промотор - определенная последовательность нуклеотидов, которая связывается с ферментом РНК-полимеразой. Процесс связывания является первым этапом в последующей транскрипции.
  2. Оператор - участок ДНК, связанный с белком-репрессором. До тех пор, пока эта связь не нарушена, РНК-полимераза не будет считывать информацию.
  3. Ряд структурных генов , кодирующих информацию обо всех ферментах, участвующих в расщеплении определенного субстрата или синтезе какого-либо вещества.
  4. Терминатор - участок ДНК, на котором заканчивается считывание.

При поступлении субстрата в клетку его молекулы связываются с белком-репрессором, который после этого теряет способность взаимодействовать с оператором, происходит инициация, а РНК-полимераза начинает синтезировать иРНК, комплементарную структурным генам (элонгация). Затем в рибосомах синтезируются соответствующие ферменты, расщепляющие данный субстрат. Если субстрата не остается, освобождается белок-репрессор, который вновь блокирует оператор, и синтез иРНК и ферментов прекращается. Таким образом, бактерия синтезирует только те ферменты, которые ей необходимы в данный момент, что позволяет экономить энергию. Другой вариант регуляции связан с накоплением конечного вещества какого-либо биохимического процесса. Это вещество является одновременно корепрессором, который, связываясь с репрессором, делает его активным, и активность оператора подавляется.

У эукариот регуляция активности генов значительно сложнее. На нее влияют гормоны, медиаторы, другие биологически активные вещества, причем транскрипция, выход иРНК и трансляция регулируются отдельно и могут быть разделены во времени. Кроме того, структурные гены, кодирующие белки, необходимые для выполнения одной функции, могут быть расположены в разных хромосомах. Структура самих генов эукариот также более сложная.

У эукариот собственно гены разделены участками «молчащей», нетранскрибируемой ДНК - спейсерами . Они играют важную роль в регуляции транскрипции. На них, в частности, расположены последовательности нуклеотидов, усиливающие или угнетающие ее (например, при связывании гормонов). Функции промотора выполняет так называемый блок TATAAT, обогащенный последовательностями аденина и тимина (иногда встречаются и другие последовательности). Затем идет собственно ген, а затем участок-терминатор. После чего вновь идет спейсерный участок.



Понравилась статья? Поделитесь ей
Наверх